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Abstract Finite elements of degree two or more are

needed to solve various P.D.E. problems. This paper dis-

cusses a method to validate such meshes for the case of the

usual Lagrange elements of various degrees. The first

section of this paper comes back to Bézier curve and Bézier

patches of arbitrary degree. The way in which a Bézier

patch and a finite element are related is recalled. The usual

Lagrange finite elements of various degrees are discussed,

including simplices (triangle and tetrahedron), quads,

prisms (pentahedron), pyramids and hexes together with

some low-degree Serendipity elements. A validity condi-

tion, the positivity of the jacobian, is exhibited for these

elements. Elements of various degrees are envisaged also

including some ‘‘linear’’ elements (therefore straight-sided

elements of degree 1) because the jacobian (polynomial) of

some of them is not totally trivial.

Keywords High-order finite elements � Bézier curves �
Bézier patches

List of symbols

K̂ The reference element, K the

current element, FK the mapping

from K̂ to K, pi; pij; . . .; a shape

function, d the degree of the finite

element, J the jacobian of K, q the

degree of this jacobian,

Âi, Ai; ðAij;Aijk;AijklÞ A node of K̂ and its image by FK

u, v, w, t or x̂; ŷ; ẑ The parameters living in the

parametric space, e.g. K̂

C and c, R and r, H
and h, resp

A curve and its expression, a

bidimensional patch and its

expression, a tridimensional patch

and its expression,

Pij (Pijk;Pijkl) A control point, Nij (Nijk;Nijkl) a

(scalar) control value

Bd
i ðuÞ The Bernstein polynomial of

degree d for a system of natural

coordinates,

Bd
ijðu; vÞ;Bd

ijkðu; v;wÞ; . . .; the
Bernstein polynomial of degree

d for a system of barycentric

coordinates, Cd
i , the binomial

coefficient,

:½ �, :f g, :j j, ð: ^ :Þ and
\:[

Amatrix, a vector, a determinant, the

cross product and the dot product.

1 Introduction

High-order (p-version) finite elements are employed to

accurately solve a number of P.D.E. with a good rate of

convergence, see [2,3,8,9,21]. The order impacts two
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different aspects, one concerning the geometry, and the

other the finite element approximation. These two aspects

may be combined or not. For instance, a high-order ele-

ment in the case of a straight-sided geometry does not lead

to any difficulty at the time the geometry is considered,

while even a not too high-order element where the geom-

etry is a curved geometry may lead to some tedious

questions, see the pioneering references, [22–24] and [11].

In this paper, we are only concerned with the geometric

validity of high-order meshes of planar or volume domains

with curved boundaries but we are not directly interested in

the finite element aspect, e.g. solution methods and mesh

quality. As regards the validity of a given mesh, a common

idea is that it is sufficient to locate the nodes on the curved

edges without giving any explicit attention to the positivity

of the resulting jacobian. Another idea and one that is

advocated in a number of papers is to evaluate the jacobian

on a sample of points (for example Gauss points) but this is

only a necessary condition. Actually, this works well in

most cases but only if the boundary is not too bended. This

is why we decided to consider this problem by returning to

the purely theoretical point of view with a deliberate

geometric touch, as we did in [7] for tetrahedral elements,

in [16] for quadrilaterals and as can also be found in [19]

and, more recently, in [20] for high-order triangles.

2 Bernstein polynomials, Bézier curves and Bézier
patches

Following [5] and [12], a Bézier curve of degree d is

defined by means of d ? 1 control points and the Bernstein

basis. More precisely, let Pi 2 R2 orR3 be those points, the

curve C reads

C ¼ cðuÞ ¼
X

i¼0;d

Bd
i ðuÞPi with u 2 ½0; 1�

( )
ð1Þ

and, using a system of barycentric coordinates, the same

reads

C ¼ cðu; vÞ ¼
X

iþj¼d

Bd
ijðu; vÞPij; with uþ v ¼ 1

( )
ð2Þ

In the above equations, the Bernstein polynomials,

respectively, read as

Bd
i ðuÞ ¼ Cd

i u
ið1� uÞd�i ¼ d!

i!ðd � iÞ! u
ið1� uÞd�i ð3Þ

and

Bd
ijðu; vÞ ¼ Cd

iju
ivj ¼ d!

i!j!
uivj with iþ j ¼ d; ð4Þ

and so on.

In the case where d ¼ 2, C is an arc of parabola, Fig. 1,

passing through P20 and P02, the tangent at P20 is parallel to

P20P11
����!

, that at P02 is parallel to P11P02
����!

. Let M be the mid-

node of C, e.g. M ¼ cð1
2
Þ, then the tangent at M is parallel

to P20P02
����!

. Moreover, M, in terms of the Pij, reads

M ¼ 2P11 þ P20 þ P02

4
and, conversely, we have

P11 ¼
4M � P20 � P02

2
:

This abstract reading of cðuÞ extends to tensor-product

patches, for instance, in two dimension, and for the degree

d � d, we have

rðu; vÞ ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij; ð5Þ

and the patch reads as

R ¼ rðu; vÞ with ðu; vÞ 2 ½0; 1� � ½0; 1�f g; ð6Þ

and this extends to tridimensional tensor-product patches

(e.g. by defining hðu; v;wÞ;H; . . . accordingly). Such defi-

nitions will be used to define quadrilaterals, hexes and

quadrilateral faces (in the case of a prism or a pyramid).

As for simplices or triangular faces, it is much more

convenient to use the barycentric form of the Bézier set-

ting, e.g.

R¼ rðu;v;wÞ ¼
X

iþjþk¼d

Bd
ijkðu:v;wÞPijk; uþ vþw¼ 1

( )

ð7Þ

Fig. 1 The Bézier curve of degree 2 related to the control points P20,

P11 and P02
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for a triangle or a triangular face and

H ¼ hðu; v;w; tÞ ¼
X

iþjþkþl¼d

Bd
ijklðu:v;w; tÞPijkl

( )
ð8Þ

with uþ vþ wþ t ¼ 1, for a tet patch.

Before going further, let us recall the rule of derivation

and the rule of multiplication as they apply to Bernstein

polynomials. For the derivatives, we have

d

du
Bd
i ðuÞ ¼ d ðBd�1

i�1 ðuÞ � Bd�1
i ðuÞÞ; ð9Þ

together with (barycentric coordinates)

o

ou
Bd
ijðu; vÞ ¼ d Bd�1

i�1;jðu; vÞ ð10Þ

o

ov
Bd
ijðu; vÞ ¼ d Bd�1

i;j�1ðu; vÞ ð11Þ

Then, it is easy to see that

d

du

X

i¼0;d

Bd
i ðuÞPi ¼ d

X

i¼0;d�1

Bd�1
i ðuÞPiPiþ1

���!
;

with the following diagram for the Pis:

P0 P1 P2 � � �Pd�1 Pd

and
o

ou

X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij

¼ d
X

i¼0;d�1

X

j¼0;d

Bd�1
i ðuÞBd

j ðvÞPijPiþ1;j
����!

;

o

ov

X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij

¼ d
X

i¼0;d

X

j¼0;d�1

Bd
i ðuÞBd�1

j ðvÞPijPi;jþ1
����!

;

with, now, the following diagram for the Pijs:

P0d P1d P2d . . . Pd�1;d Pdd

P0;d�1 P1;d�1 P2;d�1 . . . Pd�1;d�1 Pd;d�1

. . .

. . .

P01 P11 P21 . . . Pd�1;1 Pd1

P00 P10 P20 . . . Pd�1;0 Pd0

etc., and (for a barycentric system)

o

ou

X

iþj¼d

Bd
ijðu; vÞPij ¼ d

X

iþj¼d�1

Bd�1
ij ðu; vÞPiþ1;j;

o

ov

X

iþj¼d

Bd
ijðu; vÞPij ¼ d

X

iþj¼d�1

Bd�1
ij ðu; vÞPi;jþ1;

with the following diagram for the Pijs:

Pd0 Pd�1;1 Pd�2;2 . . . P1;d�1 P0;d

and

o

ou

X

iþjþk¼d

Bd
ijkðu; v;wÞPijk

¼ d
X

iþjþk¼d�1

Bd�1
ijk ðu; v;wÞPiþ1;j;k;

o

ov

X

iþjþk¼d

Bd
ijkðu; v;wÞPijk

¼ d
X

iþjþk¼d�1

Bd�1
ijk ðu; v;wÞPi;jþ1;k;

o

ow

X

iþjþk¼d

Bd
ijkðu; v;wÞPijk

¼ d
X

iþjþk¼d�1

Bd�1
ijk ðu; v;wÞPi;j;kþ1; ð12Þ

with, now, the following diagram for the Pijks:

P0;0;d

. . .

Pd�2;0;2 . . . P0;d�2;2

Pd�1;0;1 Pd�2;1;1 . . . P1;d�2;1 P0;d�1;1

Pd;0;0 Pd�1;1;0 Pd�2;2;0 . . . P2;d�2;0 P1;d�1;0 P0;d;0

etc.

For the multiplication, we have

Bd
i ðuÞBe

j ðuÞ ¼
Cd
i C

e
j

Cdþe
iþj

Bdþe
iþj ðuÞ; ð13Þ

together with

Bd
i1j1

ðu; vÞBe
i2j2

ðu; vÞ ¼
Cd
i1j1

Ce
i2j2

Cdþe
i1þi2;j1þj2

Bdþe
i1þi2;j1þj2

ðu; vÞ ð14Þ

in the case of a curve but also for general patches. These

rules will be of great interest at the time we will compute

the jacobian of the elements in the next sections.

3 Bézier form versus finite element form
of an element

This section briefly recalls the basics of what a finite ele-

ment is and shows that a complete1 Lagrange finite element

can be written in terms of a Bézier form. To do this, we

follow [8] and more precisely [9], using the same

notations.

Let K be a geometric element (triangle, quad, tet, etc.),

the Lagrange finite element associated with K is defined by

the triple [K, P, Nodes] where K is the element, P is a set

1 incomplete element can also be written in this way but it is more

subtle.
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of polynomials and Nodes is a set of nodes. Actually, K is

constructed as the image of a reference element K̂,

equipped with a set of reference nodes, by means of a

mapping FK , e.g. K ¼ FKðK̂Þ and, in turn, FK is defined by

means of the polynomials in P and we have FKðÂÞ ¼
X

i¼0;n�1
piðÂÞAi; where pi is a polynomial, n is the

number of such polynomials (e.g. the dimension of space

P), Ai is the node i of K and Â is the value of the parameters

(e.g. for instance, (u, v) or ðx̂; ŷÞ) where FK is evaluated.

Therefore, if we consider K as a patch (such as R in the

previous section), we have (with evident notations)

K ¼ Mðu; vÞÞ ¼
X

i¼0;n�1

piðu; vÞAi; ðu; vÞ 2 K̂

( )
; ð15Þ

in other words, the finite element is defined by means of

shape functions and nodes.

Let us consider now a Bézier form like (here is the case

of a quadrilateral patch)

rðu; vÞ ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij;

where d is the degree of space P and Pij is a set of control

points, i.e. a patch defined by means of Bernstein polyno-

mials and control points.

As a matter of fact, for a complete element, the space

P is complete so that it can be expressed both in terms

of the above piðu; vÞ and the Bernstein polynomials

which are two equivalent bases of the polynomial space.

In other words, we have (with appropriate notations)
X

i¼0;n�1

piðu; vÞAi ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij:

As a consequence, the Ais can be written in terms of the

Pijs and vice versa, and the pis are linear combinations of

the Bd
i and vice versa.

To simply illustrate this point, we return to the simple

case of a Bézier curve of degree 2. It reads
X

i¼0;2

B2
i ðuÞPi ¼ ð1� uÞ2P0 þ 2uð1� uÞP1 þ u2P2;

let us define A0 ¼ P0;A1 ¼ P0þP2þ2P1

4
andA2 ¼ P2, then

P0 ¼ A0;P1 ¼ �A0�A2þ4A1

2
andP2 ¼ A2 and, replacing the

Pis in the above relation, we have

ð1� uÞ2A0 þ 2uð1� uÞ�A0 � A2 þ 4A1

2
þ u2A2

¼ ð1� uÞð1� 2uÞA0 þ 4uð1� uÞA1 þ uð2u� 1ÞA2;

which is the classical Lagrange form of the curve. This

mechanism applies whatever the degree of the curve and

also applies for the patches themselves. The main interest

is then to replace the finite elements by their equivalent

Bézier setting, making simpler and systematic the calcu-

lation and the analysis of their jacobian polynomials using

the related convex hull property.

4 Computing and evaluating the jacobian

First of all, we introduce the control points associated with

a given element K (formulae allows for this in the case K is

defined by its nodes, see Appendix). Then, we write the

finite element in its Bézier setting and we express its

jacobian. This polynomial being a product of Bernstein

polynomials (derivatives are multiplied one each other) is,

itself, a Bézier form. Therefore, we have immediately a

sufficient condition of positiveness: the coefficients of the

polynomial must be strictly positive in the case of an

interpolant coefficient and non-negative if not.

Before giving the exhaustive catalogue of elements, we

give a detailed description of the 9-node quad as an

illustration.

4.1 The 9-node Lagrange quadrilateral

The geometric view of a finite element leads us to see it as

a patch defined in a parametric space, here ½0; 1� � ½0; 1�,
the unit-square. Since the 9-node quad is a complete ele-

ment of degree 2, we have

rðu; vÞ ¼
X

i¼0;2

X

j¼0;2

B2
i ðuÞB2

j ðvÞPi;j; ð16Þ

using the derivative rule, cf. [12], we have

orðu; vÞ
ou

¼ 2
X

i¼0;1

X

j¼0;2

B1
i ðuÞB2

j ðvÞD10
i;j

and, similarly
orðu; vÞ

ov
¼ 2

X

i¼0;2

X

j¼0;1

B2
i ðuÞB1

j ðvÞD
01
i;j

with

D10
i;j ¼ PijPiþ1;j

����!
and D01

i;j ¼ PijPi;jþ1
����!

:

Then, the Jacobian matrix (of the derivatives) is

M ¼ orðu; vÞ
ou

orðu; vÞ
ov

� �
; ð17Þ

and the jacobian (determinant of the above matrix) simply

reads

J ðu; vÞ ¼ 4
X

i1¼0;1

X

j1¼0;2

B1
i1
ðuÞB2

j1
ðvÞD10

i1;j1

�����

X

i2¼0;2

X

j2¼0;1

B2
i2
ðuÞB1

j2
ðvÞD01

i2;j2

�����;

408 Engineering with Computers (2016) 32:405–424
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or

J ðu; vÞ ¼ 4
X

i1¼0;1

X

j1¼0;2

X

i2¼0;2

X

j2¼0;1

B1
i1
ðuÞB2

j1
ðvÞB2

i2
ðuÞB1

j2
ðvÞ

D10
i1;j1

D01
i2;j2

���
���;

then using the multiplication rule, cf.[12], we have

B1
i ðuÞB2

kðuÞ ¼
C1
i C

2
k

C3
iþk

B3
iþkðuÞ;

and the same holds in v. Hence

J ðu; vÞ ¼ 4
X

i1¼0;1

X

j1¼0;2

X

i2¼0;2

X

j2¼0;1

K
1;0
i1i2

K
0;1
j1j2

B3
i1þi2

ðuÞB3
j1þj2

ðvÞ

D10
i1;j1

D01
i2;j2

���
���;

with

K
1;0
i1i2

¼
C1
i1
C2
i2

C3
i1þi2

¼
C2
i2

C3
i1þi2

and K
0;1
j1j2

¼
C2
j1
C1
j2

C3
j1þj2

¼
C2
j1

C3
j1þj2

:

To complete the final formula, we group together the terms

to find the following generic expression:

J ðu; vÞ ¼ 4
X

I¼0;3

X

J¼0;3

B3
I ðuÞB3

JðvÞQIJ ; ð18Þ

which leads to finding the coefficients QIJ . At the same

time, we know the degree of the jacobian polynomial, 3 in

each direction (u and v) and we see that the number of

control coefficients is 16.

The final formula for the coefficients2 is

QIJ ¼
X

i1þi2¼I

X

j1þj2¼J

C2
i2

C3
i1þi2

C2
j1

C3
j1þj2

D10
i1;j1

D01
i2;j2

���
��� ð19Þ

and, in extenso, after replacing the Pij by the Ai and Ci

(see Fig. 2 for the correspondence of these notations), we

have

Q00 ¼ A1C5
��!

A1C8
��!���

���

Q01 ¼ 1

3
A1C5
��!

C8A4
��!���

��� þ 2

3
C8C9
���!

A1C8
��!���

���

Q02 ¼ 1

3
A4C7
��!

A1C8
��!���

��� þ 2

3
C8C9
���!

C8A4
��!���

���

Q03 ¼ A4C7
��!

C8A4
��!���

���

Q10 ¼ 2

3
A1C5
��!

C5C9
���!���

��� þ 1

3
C5A2
��!

A1C8
��!���

���

Q11 ¼ 2

9
A1C5
��!

C9C7
���!���

��� þ 4

9
C8C9
���!

C5C9
���!���

���

þ 1

9
C5A2
��!

C8A4
��!���

��� þ 2

9
C9C6
���!

A1C8
��!���

���

Q12 ¼ 2

9
A4C7
��!

C5C9
���!���

��� þ 4

9
C8C9
���!

C9C7
���!���

���

þ 1

9
C7A3
��!

A1C8
��!���

��� þ
2

9
C9C6
���!

C8A4
��!���

���

Q13 ¼ 2

3
A4C7
��!

C9C7
���!���

��� þ 1

3
C7A3
��!

C8C4
���!���

���

Q20 ¼ 1

3
A1C5
��!

A2C6
��!���

��� þ 2

3
C5A2
��!

C5C9
���!���

���

Q21 ¼ 1

9
A1C5
��!

C6A3
��!���

��� þ 2

9
C8C9
���!

A2C6
��!���

���

þ 2

9
C5A2
��!

C9C7
���!���

��� þ 4

9
C9C6
���!

C5C9
���!���

���

Q22 ¼ 1

9
A4C7
��!

A2C6
��!���

��� þ 2

9
C8C9
���!

C6A3
��!���

���

þ 2

9
C7A3
��!

C5C9
���!���

��� þ 4

9
C9C6
���!

C9C7
���!���

���

Q23 ¼ 1

3
A4C7
��!

C6A3
��!���

��� þ
2

3
C7A3
��!

C9C7
���!���

���

Q30 ¼ C5A2
��!

A2C6
��!���

���

Q31 ¼ 1

3
C5A2
��!

C6A3
��!���

��� þ 2

3
C9C6
���!

A2C6
��!���

���

Q32 ¼ 1

3
C7A3
��!

A2C6
��!���

��� þ 2

3
C9C6
���!

C6A3
��!���

���

Q33 ¼ C7A3
��!

C6A3
��!���

���

It can be observed that the number of determinants in the

coefficients is 36, i.e. 6� 6 or ð4� 1þ 4� 2�2þ 4� 4Þ,
one term for a corner, 2 terms for an edge and 4 terms for

an internal coefficient, or again and in other words, all the

combinations of all the vectors that can be constructed with

the control points in all the directions.

A precise observation of the ‘‘corner’’ coefficients (such

as Q00) reveals that such coefficients give a control of the

incident tangents thus detecting a potential intersection

between the two incident (edge) curves. The other coeffi-

cients allow for a more precise control of the overall

geometry.

Fig. 2 Synopsis of a 9-node quad, node numbering and control point

numbering

2 The true coefficients are NIJ ¼ 4QIJ .
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From this Bézier formulation of the jacobian, Rela-

tion (18), we derive a sufficient condition of positivity.

Validity condition A 9-node quad element is valid if the

four ‘‘corner’’ coefficients are strictly positive, while the

others are non-negative. More precisely, the element is

valid if Q00;Q30;Q33 and Q03 are strictly positive, while the

other QIJ are non-negative, giving therefore 16 conditions

(this is an immediate consequence of the convex hull

property of Bézier surfaces).

Note that these conditions are not equivalent to having

the jacobian positive at all nodes but are more demanding

(while including this fact).

Refining the condition Since this condition is only a

sufficient condition, it could be too restrictive. This is why,

in some cases, it is possible to refine the condition so as to

progressively approach a necessary and sufficient

condition.

To make the refinement process clear, let us first con-

sider the case where an edge coefficient is negative and

more precisely the case of edge A1A2, i.e. v ¼ 0. Along this

edge, the jacobian polynomial reads (remember that

Nij ¼ 4Qij)

J ðu; 0Þ ¼ ð1� uÞ3N00 þ 3uð1� uÞ2N10 þ 3u2ð1� uÞN20

þ u3N30;

let us then assume that N10 is negative. The process is as

follows:

– compute J ð1
2
; 0Þ, if this value is not strictly positive,

the element is not valid, STOP.

– if not, we cut the polynomial into two parts, one living

in ½0; 1
2
�, the other in ½1

2
; 1� and we define the two sub-

polynomials by computing their new control

coefficients,

– having these coefficients, we observe their signs and

iterate the process if necessary.

Hence, we have to compute the new coefficients, this is the

matter of the classical De Casteljau refinement algorithm.

In ½0; 1
2
�, we define the sequence (evaluation at point 1

2
)

N1
00 ¼

N00 þ N10

2
;N1

10 ¼
N10 þ N20

2
;N1

20 ¼
N20 þ N30

2
;

thenN2
00 ¼

N1
00 þ N1

10

2
;N2

10 ¼
N1
10 þ N1

20

2

and, finallyN3
00 ¼

N2
00 þ N2

10

2
:

Note that N3
00 is exactly J ð1

2
; 0Þ. The first part of the

polynomial is replaced by

J ðu; 0Þ ¼ ð1� uÞ3N00 þ 3uð1� uÞ2N1
00 þ 3u2ð1� uÞN2

00

þ u3N3
00;

and, similarly, for the second part, we have

J ðu; 0Þ ¼ ð1� uÞ3N3
00 þ 3uð1� uÞ2N2

10 þ 3u2ð1� uÞN1
20

þ u3N30:

It is trivial to check that these two polynomials are iden-

tical to the initial one, each in its ranging interval. Now, the

important result is that the new coefficients are ‘‘closer’’ to

the polynomial as can be seen by interpreting the polyno-

mial as the Bézier curve cðuÞ ¼ ðu;J ðu; 0ÞÞ. Therefore, we
have a finer analysis of this curve or, in other words, of the

sign of the polynomial.

The same idea applies when an internal coefficient is

negative. We introduce a partition of the element into four

parts and repeat the same process (while being more

technically complex in this case).

An alternative method to compute the control coeffi-

cients As pointed out in [7] and [19], there is an alternative

method to obtain the coefficients. Instead of a direct cal-

culation (as before), we solve a linear system whose rank is

that of the jacobian. Actually, as the degree is 3� 3, the

jacobian polynomial is made up of 16 terms. The idea is

then to compute the jacobian of the Q2 quad at the nodes of

a Q3 quad so as to have relations such as

J ðuk; vkÞ ¼
X

I¼0;3

X

J¼0;3

B3
I ðukÞB3

JðvkÞNIJ

where the couples ðuk; vkÞ stand for the nodes of the Q3

quad, i.e. are all the points defined by the various

combinations of the values ½0; 1
3
; 2
3
; 1�. In practice, how-

ever, the corner coefficients reduce to the jacobians

themselves (as an example, N00 ¼ J ð0; 0Þ), while the

edge coefficients result from a 2� 2 system that is easy

to solve by hand. As an example, for edge A1A2, we

have vk ¼ 0 and we consider the two couples

ð1
3
; 0Þ; ð2

3
; 0Þ leading to the system

27J ðB̂5Þ ¼ 8N00 þ 12N10 þ 6N20 þ N30

27J ðB̂6Þ ¼ N00 þ 6N10 þ 12N20 þ 8N30

(

where B̂5 and B̂6 correspond to the above two couples.

Then, we have

N10 ¼
1

6
ð�5N00 þ 18J ðB̂5Þ � 9J ðB̂6Þ þ 2N30Þ

and N20 ¼
1

6
ð2N00 � 9J ðB̂5Þ þ 18J ðB̂6Þ � 5N30Þ

and similar expressions for the other edge coefficients.

Once all of these have been computed, we have a 4� 4

system to solve in order to obtain the four remaining

coefficients.
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5 Bidimensional complete Lagrange elements

The shape functions for Lagrange triangles together with

for Lagrange quads can be written using a generic formu-

lation. Let

/iðuÞ ¼
ð�1Þi

i!ðd � iÞ!P
l¼d
l¼0;l 6¼iðl� duÞ for i 6¼ 0 and/0ðuÞ ¼ 1;

then, the shape function with index ij for a quad of degree

d simply reads

pijðu; vÞ ¼ /iðuÞ/jðvÞ: ð20Þ

The generic expression for a triangle of degree d involves

using the system of barycentric coordinates. Let

/iðuÞ ¼
1

i!
Pi�1

l¼0ðdu� lÞ;

then, the shape function with index ijk for a triangle of

degree d simply reads

pijkðu; v;wÞ ¼ /iðuÞ/jðvÞ/kðwÞ: ð21Þ

As pointed out in the above example, those expressions are

not easy to consider if one wants to compute the derivatives

and the jacobian polynomial, and therefore, we will write

those elements in their Bézier forms.

5.1 Order 1 or 3-node triangle

TheBézier form and the finite element setting are the same in

this case when the finite element form is written in terms of

the barycentric coordinates. Indeed, we have p0ðu; v;wÞ ¼ u,

p1ðu; v;wÞ ¼ v and p2ðu; v;wÞ ¼ w which are exactly

B1
100ðu; v;wÞ;B1

010ðu; v;wÞ;B1
001ðu; v;wÞ and the 3 nodes are

the 3 control points. Therefore, the 3-node triangle reads

R ¼ rðu; v;wÞ ¼
X

iþjþk¼1

B1
ijkðu; v;wÞPijk; ð22Þ

where the Pijks are structured as follows:

P001

P100 P010:

To become familiar with a system of barycentric coordi-

nates, we fully detail this simple case. Let ðx̂; ŷÞ be the

(cartesian) coordinates in K̂, then the jacobian (in terms of

FK) is the following determinant:

J ¼ J ðx̂; ŷÞ ¼ oFK

ox̂

oFK

oŷ

����

����;

and we consider (in terms of r) the Jacobian matrix

½dr� ¼ or
ou

or
ov

or
ow

� �
;

and we apply the variable change (u ¼ 1� x̂� ŷ, v ¼ x̂,

and w ¼ ŷ), denoted by g, then

J ¼ ½dr� ½dg�

holds where

½dg� ¼

ou

ox̂

ou

oŷ

ov

ox̂

ov

oŷ

ow

ox̂

ow

oŷ

2
66666664

3
77777775

¼
�1 � 1

1 0

0 1

2
64

3
75;

therefore,

J ¼ or
ov

� or
ou

or
ow

� or
ou

����

����

hence, we have

J ¼ ð�1Þ2 or
ou

� or
ow

or
ov

� or
ow

����

����;

which is a simpler form to express the derivatives since r
and its partials are involved. Using the Relations (12), we

obtain

J ¼ P100 � P001 P010 � P001j j ¼ P100P010
�����!

P100P001
�����!���

���;

and as expected, the jacobian polynomial is constant and is

twice the surface area of the element in hand. The validity

condition resumes to J [ 0, remember that Pijk ¼ Aijk.

5.2 Order d triangles

The finite element (as being complete) is written in a

Bézier form as

R ¼ rðu; v;wÞ ¼
X

iþjþk¼d

Bd
ijkðu; v;wÞPijk; ð23Þ

where the Pijks are structured as shown in Sect. 2 where we

also displayed the partials of such a function r. We repeat

what we did for the 3-node triangle to obtain the jacobian

polynomial, we find

J ðu; v;wÞ ¼
X

IþJþK¼2ðd�1Þ
B
2ðd�1Þ
IJK ðu; v;wÞNIJK ;

where the coefficients NIJK are

NIJK ¼ d2
X

i1þi2¼I;j1þj2¼J;k1þk2¼K

Cd�1
i1j1k1

Cd�1
i2j2k2

C
2ðd�1Þ
i1þi2;j1þj2;k1þk2

D100
i1þ1;j1k1

D010
i2þ1;j2k2

���
���

ð24Þ

with i1 þ j1 þ k1 ¼ i2 þ j2 þ k2 ¼ d � 1 and with the fol-

lowing D:
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D100
ijk ¼ PijkPi�1;jþ1;k

��������!
and D010

ijk ¼ PijkPi�1;j;kþ1
��������!

:

The jacobian is a polynomial of degree q ¼ 2ðd � 1Þ and

the number of control coefficients is
ðqþ1Þ�ðqþ2Þ

2
which

rapidly increases with q or d as shown in the following

Table 1 where we indicate also the number of terms (e.g.

ðd�ðdþ1Þ
2

Þ2) to be computed (some coefficients reduce to one

term while others are the summation of a number of terms).

The geometry of the observed element is valid if the

‘‘corner’’ coefficients are strictly positive, while the others

are non-negative. As pointed out for the 9-node quad, the

‘‘corner’’ coefficients control the two tangents incident to a

vertex and it is possible to refine (while being a rather

technical step) the condition in the case where a non-

‘‘corner’’ coefficient is negative, the ‘‘corner’’ coefficients

being all strictly positive and the jacobian evaluated at the

cutting node(s) used in the refinement procedure being

positive.

In practice Given the nodes of the element, one should

be able to define the corresponding control points. This

implies inverting the matrix defining the nodes in terms of

the control points. Indeed, we have

Af g ¼ ½M� Pf g;

where Af g ¼ Aijk

� �
ijk

and Pf g ¼ Pijk

� �
ijk
. Since

rðu; v;wÞ ¼
X

iþjþk¼d

Bd
ijkðu; v;wÞPijk;

we have

Aklm ¼
X

iþjþk¼d

Bd
ijkðu; v;wÞPijk

for the triple ðu; v;wÞ ¼ ðk
d
;
l

d
;
m

d
Þ;

thus giving the above matrix, and the solution is

Pf g ¼ ½M��1
Af g. Actually, it is not strictly required to

inverse the entire matrix, but instead to consider two systems

of a lower dimension, one for the edge nodes, and, having the

solution, the other for the internal nodes. For instance, con-

sider w ¼ 0 and the corresponding edge, then because some

of the Bernstein are null, the system to be considered reduces

to a ðd � 1Þ � ðd � 1Þ system. This system gives the

expression of the (edge) nodes in terms of the (edge) control

points, and the inverse gives the expression of the (edge)

control points in terms of the (edge) nodes. Now,we consider

the internal nodes (if any) and this result in a ððdþ1Þðdþ2Þ
2

�
3dÞ � ððdþ1Þðdþ2Þ

2
� 3dÞ system giving the expression of the

(internal) nodes in terms of the (edge and internal) control

points and the inverse gives the expression of the (internal)

control points in terms of the (internal) nodes and the (edge)

control points. Replacing those points by the solution of the

first system results in the solution. The inverse matrices are

computed once and applied to all the elements in the mesh or

one would prefer using explicit formulae (see Appendix).

In the case of a straight-sided element (and provided the

reference nodes are well located), the element is valid only

if its 1-order associated element has a positive surface area

and, therefore, the geometric validity is obtained for free

(see hereafter how to minimize the cost of the validity

control).

5.3 Order 1 or 4-node quadrilateral

The Bézier form and the finite element setting also coin-

cide in this case. Indeed, we have

p00ðu; vÞ ¼ ð1� uÞð1� vÞ, p10ðu; vÞ ¼ uð1� vÞ, p11ðu; vÞ
¼ uv and p01ðu; vÞ ¼ ð1� uÞv which are exactly

B1
00ðuÞB1

00ðvÞ; . . . and the 4 nodes are the 4 control points.

Therefore, the 4-node quad reads

R ¼ rðu; vÞ ¼
X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞPij; ð25Þ

where the Pijks are structured as follows:

P01 P11

P00 P10;

and, the jacobian polynomial has the form3

J ðu; vÞ ¼
X

I¼0;1

X

J¼0;1

B1
I ðuÞB1

JðvÞNIJ ;

and therefore, 4 terms and the control coefficients are

NIJ ¼
X

i1þi2¼I

X

j1þj2¼J

D1;0
i1;j1

D0;1
i2;j2

���
���

for I ¼ 0; 1 and J ¼ 0; 1;

withD1;0
i;j ¼ PijPiþ1;j

����!
and D0;1

i;j ¼ PijPi;jþ1
����!

;

therefore, those coefficients (after some permutations) are

N00 ¼ jP00P10
����!

P00P01
����!j;N10 ¼ jP00P10

����!
P10P11
����!j;

Table 1 Statistics about the triangles of degree 1 to 6

d #nodes q #coef #terms

1 3 0 1 1

2 6 2 6 9

3 10 4 15 36

4 15 6 28 100

5 21 8 40 225

6 28 10 66 441

3 note that this is exactly the same form as the element, this fact is

true only for the degree 2.
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N11 ¼ jP01P10
����!

P01P11
����!j;N01 ¼ P01P00

����!
P01P11
����!���

���:

These coefficients measure twice the surface areas of the 4

triangles constructed with the vertices of the quad, and the

validity condition resumes to have these 4 values positive,

and therefore, the validity condition is, with no surprise, to

have the element convex (with Pij ¼ Aij in the formula).

5.4 Order d quadrilaterals

The finite element4 (as being complete) is written in a

Bézier form as

rðu; vÞ ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPi;j; ð26Þ

and the jacobian polynomial has the form

J ðu; vÞ ¼
X

I¼0;q

X

J¼0;q

B
q
I ðuÞB

q
JðvÞNIJ ;

where q ¼ 2d � 1 and the coefficient NIJs are

NIJ ¼ d2
X

i1þi2¼I

X

j1þj2¼J

Cd�1
i1

Cd
i2

C
q
i1þi2

Cd
j1
Cd�1
j2

C
q
j1þj2

D1;0
i1;j1

D0;1
i2;j2

���
��� for I ¼ 0; q and J ¼ 0; q ð27Þ

withD1;0
i;j ¼ PijPiþ1;j

����!
and D0;1

i;j ¼ PijPi;jþ1
����!

;

and with i1 ¼ 0; d � 1; i2 ¼ 0; d; j1 ¼ 0; d; j2 ¼ 0; d � 1.

The jacobian is a polynomial of degree q� q ¼ ð2d �
1Þ � ð2d � 1Þ , and the number of control coefficients is

ðqþ 1Þ2 which rapidly increases with q or d as shown in

the following Table 2 where we indicate also the number of

terms (e.g. d2ðd þ 1Þ2) to be computed (some coefficients

reduce to one term, while others are the summation of a

number of terms). The geometry of the observed element is

valid if the ‘‘corner’’ coefficients are strictly positive, while

the others are non-negative. As already pointed out, the

‘‘corner’’ coefficients control the two tangents incident to a

vertex, and it is possible to refine (while being a rather

technical step) the condition in the case where a non-

‘‘corner’’ coefficient is negative, the ‘‘corner’’ coefficients

being all strictly positive.

Remark As compared (see the two Tables 1 , 2) with

triangles, quadrilaterals have a jacobian with a higher

degree and, in turn, the number of control coefficients is

largely much more high for a given degree.

In practice Given the nodes of the element, one should

be able to define the corresponding control points. This

implies inverting the matrix defining the nodes in terms of

the control points. Indeed, we have

Af g ¼ ½M� Pf g;

where Af g ¼ Aij

� �
ij
and Pf g ¼ Pij

� �
ij
. Since

rðu; vÞ ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij;

we have

Akl ¼
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞPij

for the couple ðu; vÞ ¼ ðk
d
; l
d
Þ; thus giving the above matrix

and the solution is Pf g ¼ ½M��1
Af g.

Actually and as for triangles, it is not strictly required to

inverse the entire matrix but, instead to consider two sys-

tems of a lower dimension, one for the edge nodes, and,

having the solution, the other for the internal nodes. For

instance, consider w ¼ 0 and the corresponding edge, then

because some of the Bernstein are null, the system to be

considered reduces to a ðd � 1Þ � ðd � 1Þ system. This

system gives the expression of the (edge) nodes in terms of

the (edge) control points, and the inverse gives the

expression of the (edge) control points in terms of the

(edge) nodes. Now, we consider the internal nodes (if any)

and this results in a ðd � 1Þ2 � ðd � 1Þ2 system giving the

expression of the (internal) nodes in terms of the (edge and

internal) control points, and the inverse gives the expres-

sion of the (internal) control points in terms of the (inter-

nal) nodes and the (edge) control points. Replacing those

points by the solution of the first system results in the

solution. The inverse matrices are computed once and

applied to all the elements in the mesh or one would prefer

using explicit formulae (see Appendix).

In the case of a straight-sided element (and provided the

reference nodes are well located), the element is valid only

if its 1-order associated element is convex (therefore 4

surface areas must be computed) and, thus, the geometric

validity is obtained for free.

Table 2 Statistics about the quadrilaterals of degree 1 to 6

d #nodes q� q #coef #terms

1 4 1 � 1 4 4

2 9 3 � 3 16 36

3 16 5 � 5 36 144

4 25 7 � 7 64 400

5 36 9 � 9 100 900

6 49 11 � 11 144 1764

4 While not being necessary, we consider the case where the degree is

the same in both directions.
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6 Bidimensional incomplete Lagrange elements

Incomplete or reduced elements have a reduced number of

nodes (typically, the edge nodes are those of the complete

elements, while the number of internal nodes is zero or

smaller than that in the complete element). Low-degree

elements are well documented in the literature, at least for

quad geometries (8-node quad of degree 2) and for the

9-node triangle of degree 3. The polynomial space is also of

a smaller dimension as compared with the complete space.

There are different methods to define reduced elements

among which we have the Serendipity elements where

space P is rich enough to achieve a good level of precision.

One method specifies space P and, given an adequate

number of nodes, constructs the shape functions by solving

an adequate system satisfying the desired properties.

Another method makes use of Taylor expansions in order

to eliminate the internal nodes. Whatever the method, the

shape functions have a generic expression (such as (20),

(21) for the complete Lagrange elements). Let us consider

the case of a tensor-product complete element and let pcij be

its shape functions, then we have

pijðu; vÞ ¼ pcijðu; vÞ þ
X

kl

aklij p
c
klðu; vÞ; ð28Þ

where indices ij correspond to the edge5 nodes and indices

kl are those related to the internal6 nodes of the complete

element and aklij is a coefficient (of repartition, how pckl
contributes to pij). For reduced simplices, we have a similar

generic expression

pijkðu; v;wÞ ¼ pcijkðu; v;wÞ þ
X

lmn

almnijk p
c
lmnðu; v;wÞ: ð29Þ

The topic of this paper is not to give a detailed discussion of

reduced elements7 but, instead, given a reduced element, to

find the conditions that give guarantee about its geometric

validity. The main idea is, given such an element in a mesh,

to return to a complete element equivalent to this reduced

one and then to apply what we did previously for complete

elements. It turns out that this requires to properly invent the

‘‘missing’’ nodes and the ‘‘missing’’ control points.

6.1 Order d Serendipity triangles

To have at least one internal node, we need to have d ¼ 3,

so we meet the complete triangle of degree 3, the well-

known 10-node triangle, where we have only one internal

node and the numbering of the nodes is as follows:

300300
102 012 ==> 102 012

201 111 021 201 021
300 210 120 030 300 210 120 030

A Taylor expansion, based on the fact that the reduced

polynomial space must contain the space Pd�1 ¼ P2 (in

terms of the variables x and y, the span of P2 is made up of

1; x; y; xy; x2 and y2), is used to express the edge values of a

generic function (let q be this function) in terms of the

internal value of this function, cf. [4], leads to a relation8

like

12q Â111

� 	
þ 2

X

ijk2V
qðÂijk � 3

X

ijk2E
qðÂijkÞ ¼ 0; ð30Þ

where Â111 is the point, in the reference element (K̂), of

coordinates ð1
3
; 1
3
; 1
3
Þ, V stands for the set of vertices in K̂

and E stands for the set of edge nodes in K̂. Since the

pijkðu; v;wÞs enjoy the same properties, for all the indices

ijk, we have

12pijk Â111

� 	
þ 2

X

lmn2V
pijk Ŝlmn

� 	
� 3

X

lmn2E
pijk Âlmn

� 	
¼ 0:

Now, we use Relation (29) to replace the pijk by their

counterpart in terms of the complete shape functions. For

symmetry reasons, this relation reduces to

pijkðu; v;wÞ ¼ pcijkðu; v;wÞ þ apc111ðu; v;wÞ for ijk 2 V;

and

pijkðu; v;wÞ ¼ pcijkðu; v;wÞ þ bpc111ðu; v;wÞ for ijk 2 E;

in other words, there are only two coefficients. Let us fix ijk

= 300, then, we have

12p300ðÂ111Þ þ 2
X

lmn2V
p300ðŜlmnÞ � 3

X

lmn2E
p300ðÂlmnÞ ¼ 0;

and this resumes to

a ¼ � 1

6
;

and the same (fix ijk ¼ 210) implies that b ¼ 1
4
. With these

values, we have the reduced shape functions fully defined

via (29).

Then the reduced element seen as a patch reads

Mðu; v;wÞ ¼
X

ijk

pijkðu; v;wÞAijk;

5 actually, for some reduced elements, one or several internal nodes

of the complete element are retained as nodes for the reduced

element.
6 cf. infra.
7 and the way in which they are constructed, a paper being currently

under preparation to do this 8 the so-called Serendipity relation.
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where ijk lives in V and E, i.e. 9 indices. We replace again

the pijk by means of the pcijk, then we have

Mðu; v;wÞ ¼
X

ijk

pcijkðu; v;wÞ þ aijkp
c
111ðu; v;wÞ


 �
Aijk;

with aijk ¼ a or b, then this reads also

Mð:; :; :Þ ¼
X

ijk

pcijkðu; v;wÞAijk þ
X

ijk

aijkAijkp
c
111ðu; v;wÞ;

therefore, let

A111 ¼
X

ijk

aijkAijk;

so that

Mðu; v;wÞ ¼
X

ijk

pcijkðu; v;wÞAijk;

with now 10 indices. In other words, we have invented the

node A111 with which we can define a complete element

fully equivalent to the reduced element. As already seen, a

complete element is equivalent to the Bézier patch
X

iþjþk¼3

B3
ijkðu; v;wÞPijk;

from which we obtain P111 and it turns out that P111 simply

reads as

P111 ¼
X

ijk

aijkPijk;

e.g. the same expression as A111.

In practice The 9-node triangle is easy to analyse. Given

its nodes, we find its edge control points by the formulae

(see Appendix) and then we compute P111 using the above

formula. Then, just use Relation (24) to have the control

coefficients of the jacobian.

It is a rather technical task to discuss about higher order

reduced triangles, and therefore, we do not pursuit this

story of reduced triangles, see [17].

6.2 Order d Serendipity quadrilaterals

For d ¼ 2, we have the 9-node quad with one internal node

and the numbering of the nodes is as follows:

02 12 22 02 12 22
01 11 21 ==> 01 21
00 10 20 00 10 20

As for the above triangle, in this case, we impose the space

Pd ¼ P2 to be included in the reduced polynomial space.

Then, the Taylor expansion gives the Serendipity relation

4qðÂ11Þ þ
X

j¼1;4

qðŜjÞ � 2
X

j¼1;4

qðÂjÞ ¼ 0; ð31Þ

where Â11 is the point, in the reference element (K̂), of

coordinates ð1
2
; 1
2
Þ, Ŝj is vertex j of the reference element

and the Âjs are the edge nodes of the reference element.

Since the pijðu; vÞs enjoy the same properties, for all the

indices ij, we have

4pij Â11

� 	
þ

X

lm2V
pij Ŝlm
� 	

� 2
X

lm2E
pij Âlm

� 	
¼ 0;

where V stands for the set of vertices in K̂ and E stands for

the set of edge nodes in K̂. Now, we use Relation (28) to

replace the pij by their counterpart in terms of the complete

shape functions. For symmetry reasons, this relation

reduces to

pijðu; vÞ ¼ pcijðu; vÞ þ a pc11ðu; vÞ for ij 2 V;
and pijðu; vÞ ¼ pcijðu; vÞ þ b pc11ðu; vÞ for ij 2 E;

in other words, there are only two coefficients. Let us fix ij

= 00, then, we have

4p00 Â11

� 	
þ

X

lm2V
p00 Ŝlmn

� 	
� 2

X

lm2E
p00 Âlm

� 	
¼ 0;

and this resumes to

a ¼ � 1

4
;

and the same (fix ij ¼ 10) implies that b ¼ 1
2
. With these

values, we have the reduced shape functions fully defined

via (28).

Then, the reduced element, seen as a patch reads

Mðu; vÞ ¼
X

ij

pijðu; vÞAij;

where ij lives in V and E, i.e. 8 indices. We replace again

the pij by means of the pcij, then we have

Mðu; vÞ ¼
X

ij

ð pcijðu; vÞ þ aijp
c
11ðu; vÞ ÞAij;

with aij ¼ a or b, then this reads also

Mðu; vÞ ¼
X

ij

pcijðu; vÞAij þ
X

ij

aijAijp
c
11ðu; vÞ;

therefore, let

A11 ¼
X

ij

aijAij;

so that

Mðu; vÞ ¼
X

ij

pcijðu; vÞAij;
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with now 9 indices. In other words, we have invented the

node A11 with which we can define a complete element

fully equivalent to the reduced element. As we already

seen, a complete element is equivalent to the Bézier patch
X

i¼0;2

X

j¼0;2

B2
i ðuÞB2

j ðvÞPij;

from which we obtain P11 and it turns out that P11 simply

reads as

P11 ¼
X

ij

aijPij;

e.g. the same expression as A11.

In practice The 8-node quad is easy to analyse. Given its

nodes, we find its edge control points by the formulae (see

Appendix) and then we compute P11 using the above for-

mula. Then, just use Relation (27) to have the control

coefficients of the jacobian.

Higher order reduced quadrilaterals can be defined but,

as it is for triangles, this is a rather technical task, and

therefore, we do not pursuit this story of reduced quads, see

[1] or [13] for the Serendipity family.

7 Tridimensional complete Lagrange elements

Formulae (20) and (21) extend to hexahedra and simplices

and give the shape functions.

7.1 Order 1 or 4-node tetrahedron

We play again the story of the 3-node triangle. The Bézier

form and the finite element setting coincide in this case

when the finite element form is written in terms of the

barycentric coordinates. Indeed, we have p0ðu; v;w; tÞ ¼ u,

p1ðu; v;w; tÞ ¼ v, p2ðu; v;w; tÞ ¼ w and p3ðu; v;w; tÞ ¼ t

which are exactly B1
1000ðu; v;wÞ, B1

0100ðu; v;wÞ,
B1
0010ðu; v;wÞ and B1

0001ðu; v;wÞ and the 4 nodes are the 4

control points. Therefore, the 4-node tet reads

H ¼ hðu; v;w; tÞ ¼
X

iþjþkþl¼1

B1
ijklðu; v;w; tÞPijkl: ð32Þ

Let ðx̂; ŷ; ẑÞ be the (cartesian) coordinates in K̂, then the

jacobian (in terms of FK) is the following determinant:

J ¼ J ðx̂; ŷ; ẑÞ ¼ oFK

ox̂

oFK

oŷ

oFK

oẑ

����

����;

while (in terms of h) we consider the matrix

½dh� ¼ oh
ou

oh
ov

oh
ow

oh
ot

� �
;

and with the variable change (u ¼ 1� x̂� ŷ� ẑ, v ¼ x̂,

w ¼ ŷ, and t ¼ ẑ), denoted by g, we have

J ¼ ½dh� ½dg�;

where

½dg� ¼

ou

ox̂

ou

oŷ

ou

oẑ

ov

ox̂

ov

oŷ

ov

oẑ

ow

ox̂

ow

oŷ

ow

oẑ

ot

ox̂

ot

oŷ

ot

oẑ

2
666666666664

3
777777777775

¼

�1 � 1 � 1

1 0 0

0 1 0

0 0 1

2
6664

3
7775;

therefore

J ¼ oh
ov

� oh
ou

oh
ow

� oh
ou

oh
ot

� oh
ou

����

����

and after manipulating this determinant, we find

J ¼ ð�1Þ3 oh
ou

� oh
ot

oh
ov

� oh
ot

oh
ow

� oh
ot

����

����;

which is a simpler form to express the derivatives since h
and its partials are involved. Using relations (now in three

dimensions) like the Relations (12), we obtain

J ¼ � P1000 � P0001 P0100 � P0001 P0010 � P0001j j

¼ P1000P0100
������!

P1000P0010
������!

P1000P0001
������!���

���;

as expected, the jacobian polynomial is constant and is (at a

scaling factor) the volume of the element in hand. The

validity condition resumes to J [ 0 with Pijkl ¼ Aijkl in the

formula.

7.2 Order 1 or 6-node prism

The Bézier form of a 6-node prism or pentahedron involves

a barycentric form in x̂; ŷ and a tensor-product form in ẑ,

and therefore, with adequate notations, we have

Hðu; v;w; tÞ ¼
X

iþjþk¼1

X

l¼0;1

B1
ijkðu; v;wÞB1

l ðtÞPijkl; ð33Þ

with uþ vþ w ¼ 1; u ¼ 1� x̂� ŷ; v ¼ x̂;w ¼ ŷ and t ¼ ẑ,

and Pijkl the control points (i.e. the vertices). The jacobian

reads

J ¼ ð�1Þ2 oh
ou

� oh
ow

oh
ov

� oh
ow

oh
ot

����

����;

and using the formulae in Sect. 2, we have
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J ¼
����
X

l1¼0;1

B1
l1
ðtÞðP100l1 � P001l1Þ:

X

l2¼0;1

B1
l2
ðtÞðP010l2 � P001l2Þ

X

iþjþk¼1

B1
ijkðu; v;wÞB0

0ðtÞPijk0Pijk1
�����!

�����;

or

J ¼
X

iþjþk¼1

X

l1¼0;1

X

l2¼0;1

B1
l1
ðtÞB1

l2
ðtÞB1

ijkðu; v;wÞ

P100l1P001l1

�������!
P010l2P001l2

�������!
Pijk0Pijk1
�����!���

���;

or again

J ðu; v;w; tÞ ¼
X

IþJþK¼1

X

L¼0;2

B1
IJKðu; v;wÞB2

LðtÞNIJKL

where I ¼ i; J ¼ j;K ¼ k and L ¼ l1 þ l2 and with the

control coefficients

NIJKL ¼
X

l1þl2¼L

C1
l1
C1
l2

C2
l1þl2

P100l1P001l1

�������!
P010l2P001l2

�������!
PIJK0PIJK1
������!���

���

which also reads

NIJKL ¼
X

l1þl2¼L

1

C2
L

P100l1P010l1

�������!
P100l2P001l2

�������!
PIJK0PIJK1
������!���

���:

The degree of the jacobian polynomial is 1 in (u, v, w) and

2 in t, the number of control coefficients is 9. The element

is valid if its 6 corner coefficients are positive, while the 3

others are non-negative. Note that 12 determinants9 have to

be computed to obtain the 9 control coefficients. A corner

coefficient, like N0000, measures the volume of tetrahedron

P0000P0100P0010P0001 (at a scaling factor). The ‘‘vertical’’

edges have a control coefficient with 2 terms, for example,

we have

N1001 ¼
1

2
jP1001P0101
������!

P1000P0010
������!

P1000P1001
������!j

þ 1

2
jP1000P0100
������!

P1001P0011
������!

P1000P1001
������!j:

Such a coefficient gives a control about a possible rotation

(torsion) from one triangular face to the other or, in other

words, the geometry of the quadrilateral faces. In the case,

a quadrilateral face is planar, it is easy to see that the

corresponding (e.g. the 3) edge coefficients are linear

combinations of the corner coefficients, and therefore, only

6 coefficients are necessary to control the validity an ele-

ment with planar faces. To prove this, just write, for

example, in coefficient N1001, P1001P0101
������! ¼ aP1000P0100

������!þ
bP1000P1001
������!

and replace P1001P0101
������!

by this expression in

N1001.

7.3 Order 1 or 8-node hexahedron

As will be shown (and, somehow, surprisingly), the geo-

metric validity of this a priori simple element involves a

large number of calculations. The Bézier form of a 8-node

hexahedron is

Hðu; v;wÞ ¼
X

i¼0;1

X

j¼0;1

X

k¼0;1

B1
i ðuÞB1

j ðvÞB1
kðwÞPijk ð34Þ

with u, v and w in [0, 1] and Pijk the control points (i.e. the

vertices). The jacobian reads

J ðu; v;wÞ ¼ oh
ou

oh
ov

oh
ow

����

����;

and using the formulae in Sect. 2, we have

oh
ou

¼
X

j¼0;1

X

k¼0;1

B1
j ðvÞB1

kðwÞP0jkP1jk
����!

;

and then

J ðu; v;wÞ ¼
X

j¼0;1

X

k¼0;1

B1
j ðvÞB1

kðwÞP0jkP1jk
����!

�����
X

i¼0;1

X

k¼0;1

B1
i ðuÞÞB1

kðwÞPi0kPi1k
����!

X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞPij0Pij1
����!

�����;

so

J ðu; v;wÞ ¼
X

j1¼0;1

X

k1¼0;1

X

i2¼0;1

X

k2¼0;1

X

i3¼0;1

X

j3¼0;1

B1
j1
ðvÞB1

k1
ðwÞB1

i2
ðuÞÞB1

k2
ðwÞB1

i3
ðuÞB1

j3
ðvÞ

P0j1k1P1j1k1

������!
Pi20k2Pi21k2

������!
Pi3j30Pi3j31
������!���

���;

and, by the multiplication rule, we have

J ðu; v;wÞ ¼
X

l¼0;2

X

J¼0;2

X

K¼0;2

B2
I ðuÞB2

JðvÞB2
KðwÞNIJK

where the control coefficients are

NIJK ¼
X

i2þi3¼l

X

j1þj3¼J

X

k1þk2¼K

1

C2
I C

2
JC

2
K

P0j1k1P1j1k1

������!
Pi20k2Pi21k2

������!
Pi3j30Pi3j31
������!���

���:
9 This number of terms is exactly the number of combinations

between the triples of all the vectors that can be constructed with the

vertices of the element, e.g. 4 with respect to (u, v, w) and 3 with

respect to t, therefore 4� 3. Note that this property holds for all the

elements and whatever the degree.
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The jacobian is a polynomial of degree 2 in each direction.

There are 27 control coefficients involving 64 determinants

(4� 4� 4). We have four type of coefficients, the corner,

the edge and the face coefficients and one volume coeffi-

cient (N111). The corner and the edge coefficients provide

the same control as in the prism but, here, we have one

coefficient for each face and one internal coefficient. In the

case where the faces are planar, the edge and the face

coefficients are redundant with the corner coefficients

(same proof as for the prism) but we do not find any

relation between N111 and those coefficients. It means that

an element with planar faces is controlled by 9 coefficients

(and not only 8).

7.4 Order 1 or 5-node pyramid

We find in various papers a definition for this 5-node ele-

ment using rational polynomial as shape functions which

leads to a singularity in the jacobian polynomial (which is

1 for w ¼ 1). Other references propose using classical

Lagrange polynomials. This is our choice and we define the

pyramid as an hexahedron with a degenerescence for

w ¼ 1. This way of construction leads to very simple cal-

culations, while we still have a singularity (the jacobian is

zero for w ¼ 1).

Therefore, we use (34) with Pij1 ¼ P001; 8ði; jÞ, then

Hðu; v;wÞ
���� ¼

X

i¼0;1

X

j¼0;1

X

k¼0;1

B1
i ðuÞB1

j ðvÞB1
kðwÞPijk;

Hðu; v;wÞ ¼
X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞB1
0ðwÞPij0

þ
X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞB1
1ðwÞPij1;

and
P

i¼0;1

P
j¼0;1 B

1
i ðuÞB1

j ðvÞ factorizes, so we simply

have

Hðu; v;wÞ ¼
X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞB1
0ðwÞPij0

þB1
1ðwÞP001

ð35Þ

from which we easily define the 5 shape functions.

The jacobian polynomial is that of the 8-node hexahe-

dron but a number of terms are null so we have

J ðu; v;wÞ ¼
X

j¼0;1

B1
j ðvÞB1

0ðwÞP0j0P1j0
����!

�����
X

i¼0;1

B1
i ðuÞÞB1

0ðwÞPi00Pi10
����!

X

i¼0;1

X

j¼0;1

B1
i ðuÞB1

j ðvÞPij0Pij1
����!

�����;

and then

J ðu; v;wÞ ¼
X

j1¼0;1

X

i2¼0;1

X

i3¼0;1

X

j3¼0;1

B1
j1
ðvÞB1

0ðwÞB1
i2
ðuÞÞB1

0ðwÞB1
i3
ðuÞB1

j3
ðvÞ

P0j10P1j10
�����!

Pi200Pi210
�����!

Pi3j30Pi3j31
������!���

���;

written as

J ðu; v;wÞ ¼
X

I¼0;2

X

J¼0;2

B2
I ðuÞB2

JðvÞB2
0ðwÞNIJ0

where the control coefficients are

NIJ0 ¼
X

i2þi3¼I

X

j1þj3¼J

1

C2
I C

2
J

P0j10P1j10
�����!

Pi200Pi210
�����!

Pi3j30Pi3j31
������!���

���

The jacobian is a polynomial of degree 2 in each direction.

A priori, there are 9 control coefficients involving 16

determinants (2� 2� 4). We have three types of coeffi-

cients, the corner and the (horizontal) edge coefficients and

one face coefficient (N110). The corner and the edge coef-

ficients provide the same control as in the previous ele-

ments and we have one coefficient for the quadrilateral

face. Actually, the edge coefficients are redundant with the

(first four) corner coefficients, and the number of effective

coefficients reduces to 5. The reason is due to the fact that

all the ‘‘vertical’’ vectors meet at the ‘‘top’’ vertex (so that

the ‘‘vertical’’ quadrilateral faces degenerate in triangular

faces). Due to the polynomial B2
0ðwÞ ¼ ð1� wÞ2, the

jacobian vanishes when w ¼ 1.

7.5 Order d tetrahedra

We use the definition (23) to discuss the case of a degree

d tetrahedron and, now, its reading is

H ¼ hðu; v;w; tÞ ¼
X

iþjþkþl¼d

Bd
ijklðu; v;w; tÞPijkl; ð36Þ

where the Pijkls are the control points. We repeat what we

did for the triangle of degree d to obtain the jacobian

polynomial, and we find

J ðu; v;w; tÞ ¼
X

IþJþKþL¼3ðd�1Þ
B
3ðd�1Þ
IJKL ðu; v;w; tÞNIJKL;

where the coefficients NIJKL are

NIJKL ¼ d3
X

jij¼I;jjj¼J;jkj¼K;jlj¼L

Cd�1
i1j1k1l1

Cd�1
i2j2k2l2

Cd�1
i3j3k3l3

C
3ðd�1Þ
IJKL

D1000
i1þ1;j1k1l1

D0100
i2þ1;j2k2l2

D0010
i3þ1;j3k3l3

���
���; ð37Þ
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with jij ¼ i1 þ i2 þ i3, ..., and with i1 þ j1 þ k1 þ l1 ¼ i2 þ
j2 þ k2 þ l2 ¼ i3 þ j3 þ k3 þ l3 ¼ d � 1 and with the fol-

lowing D:

D1000
ijkl ¼ PijklPi�1;jþ1;k;l

���������!
; D0100

ijkl ¼ PijklPi�1;j;kþ1;l
���������!

and D0010
ijkl ¼ PijklPi�1;j;k;lþ1

���������!
:

The jacobian is a polynomial of degree q ¼ 3ðd � 1Þ. The
number of control coefficients is

ðqþ1Þðqþ2Þðqþ3Þ
6

, and the

number of determinants involved in these coefficients is

ðd�ðdþ1Þ
2

þ ðd�1Þd
2

þ � � �Þ3, see Table 3.

In practice Given the nodes of the element, one should

be able to define the control points. For the control points

corresponding to the edges, the formulae are identical to

what we have in two dimensions (see Appendix), for those

corresponding to a face, the solutions given for a triangle

apply. For the eventual internal control points, one has to

solve the corresponding system.

7.6 Order d prisms

The Bézier form of a degree d prism or pentahedron

involves a barycentric form in x̂; ŷ and a natural form in ẑ,

and therefore, with adequate notations (and the same

degree in all directions), we have

Hðu; v;w; tÞ ¼
X

iþjþk¼d

X

l¼0;d

Bd
ijkðu; v;wÞBd

l ðtÞPijkl; ð38Þ

with uþ vþ w ¼ 1; u ¼ 1� x̂� ŷ; v ¼ x̂;w ¼ ŷ and t ¼ ẑ,

and Pijkl the control points (i.e. the vertices). The jacobian

reads

J ¼ ð�1Þ2 oh
ou

� oh
ow

oh
ov

� oh
ow

oh
ot

����

����;

and using the formulae in Sect. 2, we have

J ¼
X

i1þj1þk1¼d�1

Xd

l1¼0

Bd�1
i1j1;k1

ðu; v;wÞBd
l1
ðtÞD100

i1þ1;j1;k1

�����

X

i2þj2þk2¼d�1

Xd

l2¼0

Bd�1
i2j2;k2

ðu; v;wÞBd
l2
ðtÞD010

i2þ1;j2;k2

X

i3þj3þk3¼d

Xd�1

l3¼0

Bd
i3j3;k3

ðu; v;wÞBd�1
l3

ðtÞPi3j3k3l3Pi3j3k3;l3þ1
�����������!

�����

with

D100
ijkl ¼ PijklPi�1;jþ1;k;l

���������!
and D010

ijkl ¼ PijklPi�1;j;kþ1;l
���������!

:

Grouping together the Bernstein leads to

J ð::::Þ ¼
X

IþJþK¼3d�2

X3d�1

L¼0

B3d�2
IJK ðu; v;wÞB3d�1

L ðtÞNIJKL

where the coefficients NIJKL are

NIJKL ¼ d3
X

jij¼I;jjj¼J;jkj¼K

X

jlj¼L

Cd�1
i1j1k1

Cd�1
i2j2k2

Cd
i3j3k3

Cd
l1
Cd
l2
Cd�1
l3

C3d�2
IJK C3d�1

L

D100
i1þ1;j1k1l1

D010
i2þ1;j2k2l2

D0001
i3;j3k3l3

���
���; ð39Þ

where jij ¼ i1 þ i2 þ i3, ..., and with i1 þ j1 þ k1 ¼ i2 þ
j2 þ k2 ¼ i3 þ j3 þ k3 ¼ d � 1; l1 ¼ 0; d; l2 ¼ 0; d; l3 ¼
0; d � 1 and with the following D:

D100
ijkl ¼ PijklPi�1;jþ1;k;l

���������!
; D010

ijkl ¼ PijklPi�1;j;kþ1;l
���������!

and D0001
ijkl ¼ PijklPi;j;k;lþ1

�������!
:

The jacobian is a polynomial of degree q� q0 ¼ ð3d �
2Þ � ð3d � 1Þ and the number of control coefficients is

ðq0 þ 1Þ ðqþ1Þðqþ2Þ
2

, while the number of determinants

(component of the coefficients) is 1
8
d3ðd þ 1Þ5ðd þ 2Þ, see

the table (Table 4).

Remark As compared (see Tables 3, 4) with tetrahedra,

prisms have a jacobian with a higher degree and, in turn,

the number of control coefficients is largely much more

high for a given degree.

In practice Given the nodes of the element, one should

be able to define the control points. As for the previous

elements, the control points corresponding to the edges are

obtained using the formulae we have in two dimensions

(see Appendix) and for those corresponding to a face, the

solutions given for triangular or a quadrilateral apply. For

the eventual internal control points, one has to solve the

corresponding system.

Table 3 Statistics about the tetrahedra of degree 1 to 5

d #nodes q #coef #terms

1 4 0 1 1

2 10 3 20 64

3 20 6 84 1,000

4 35 9 220 8,000

5 56 12 455 42,875

Table 4 Statistics about the pentahedra of degree 1 to 5

d #nodes q� q0 #coef #terms

1 6 1� 2 9 12

2 18 4� 5 90 972

3 40 7� 8 324 17,280

4 75 10� 11 792 150,000

5 126 13� 14 1575 850,500
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7.7 Order d hexahedra

We use the definition (26) to discuss the case of a degree

d hexahedron (with the same degree in the three direc-

tions), so we have

hðu; v;wÞ ¼
X

i¼0;d

X

j¼0;d

X

k¼0;d

Bd
i ðuÞBd

j ðvÞBd
kðwÞPijk; ð40Þ

and, the jacobian polynomial has the form

J ðu; v;wÞ ¼
X

I¼0;q

X

J¼0;q

X

K¼0;q

B
q
I ðuÞB

q
JðvÞB

q
KðwÞNIJK ;

where q ¼ 3d � 1 and the coefficients NIJK are

NIJK ¼ d3
X

jij¼I

X

jjj¼J

X

jkj¼K

Cd�1
i1

Cd
i2
Cd
i3

C
q
I

Cd
j1
Cd�1
j2

Cd
j3

C
q
J

Cd
k1
Cd
k2
Cd�1
k3

C
q
K

D100
i1j1k1

D010
i2j2k2

D001
i3j3k3

���
���; ð41Þ

with D100
ijk ¼ PijkPiþ1;jk

������!
;D010

ijk ¼ PijkPi;jþ1;k
������!

and D001
ijk ¼ PijkPij;kþ1

������!
;

i1 ¼ 0; d � 1; i2 ¼ 0; d; i3 ¼ 0; d; . . .. The jacobian is a

polynomial of degree q� q� q ¼ ð3d � 1Þ � ð3d � 1Þ �
ð3d � 1Þ and the number of control coefficients is ðqþ 1Þ3 ,
while the number of determinants (component of the coef-

ficients) is ðdðd þ 1Þ2Þ3, see Table 5.

Remark As compared (see Tables 3, 4, 5) with tetrahedra

and prisms, hexahedra have a jacobian with a higher degree

and, in turn, the number of control coefficients is largely

much more high for a given degree, even more than the

triangles versus the quadrilaterals in two dimensions.

In practice Given the nodes of the element, one should

be able to define the control points. As for the previous

elements, the control points corresponding to the edges are

obtained using the formulae we have in two dimensions

(see Appendix) and for those corresponding to a face, the

solutions given for a quadrilateral apply. For the eventual

internal control points, one has to solve the corresponding

system.

7.8 Order d pyramids

We define these elements by the same way we used to

define the 1-order pyramid, and therefore, we have

hðu; v;wÞ ¼
X

i¼0;d

X

j¼0;d

X

k¼0;d

Bd
i ðuÞBd

j ðvÞBd
kðwÞPijk ð42Þ

with Pijd ¼ P00d for all couple (i, j). Then

hðu; v;wÞ ¼
X

i¼0;d

X

j¼0;d

X

k¼0;d�1

Bd
i ðuÞBd

j ðvÞBd
kðwÞPijk

þ
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞBd
dðwÞP00d;

and
X

i¼0;d

X

j¼0;d

Bd
i ðuÞBd

j ðvÞ factorizes so we have

hðu; v;wÞ ¼
X

i¼0;d

X

j¼0;d

X

k¼0;d�1

Bd
i ðuÞBd

j ðvÞBd
kðwÞPijk

þBd
dðwÞP00d;

where Bd
dðwÞ ¼ wd, from which we can easily define the

shape functions.

The jacobian polynomial is that of the order-d hexahe-

dron but a number of terms is null so, as previously, we

have

J ðu; v;wÞ ¼
X

I¼0;q

X

J¼0;q

X

K¼0;q

B
q
I ðuÞB

q
JðvÞB

q
KðwÞNIJK ;

where q ¼ 3d � 1 and the coefficients NIJK are

NIJK ¼ d3
X

jij¼I

X

jjj¼J

X

jkj¼K

Cd�1
i1

Cd
i2
Cd
i3

C
q
I

Cd
j1
Cd�1
j2

Cd
j3

C
q
J

Cd
k1
Cd
k2
Cd�1
k3

C
q
K

jD100
i1j1k1

D010
i2j2k2

D001
i3j3k3

j;

with D100
ijk ¼ PijkPiþ1;jk

������!
;D010

ijk ¼ PijkPi;jþ1;k
������!

and D001
ijk ¼ PijkPij;kþ1

������!
:

ð43Þ

When k ¼ d, D100
ijk ¼ D010

ijk ¼ 0
!
. Since k1 ¼ 0; d � 1; k2 ¼

0; d � 1; k3 ¼ 0; d � 1 and K ¼ k1 þ k2 þ k3, the maxi-

mum in K is 3d � 3 and then ð1� wÞ2 factorizes and the

Jacobian has a singularity at w ¼ 1, J ðu; v; 1Þ ¼ 0, and, in

fact, the jacobian reads

J ðu; v;wÞ ¼
X

I¼0;q

X

J¼0;q

X

K¼0;q0
B
q
I ðuÞB

q
JðvÞB

q
KðwÞNIJK ;

where q ¼ 3d � 1 but with q0 ¼ 3d � 3, meaning that some

coefficients are missing.

The jacobian is a polynomial of degree q� q� q0 ¼
ð3d � 1Þ � ð3d � 1Þ � ð3d � 3Þ and the number of control

coefficients (apart for the degree 1 which is much more

Table 5 Statistics about the hexahedra of degree 1 to 5

d #nodes q� q� q #coef #termss

1 8 2� 2� 2 27 64

2 27 5� 5� 5 216 5,832

3 64 8� 8� 8 512 110,592

4 125 11� 11� 11 1,331 1,000,000

5 216 14� 14� 14 2,744 5,832,000
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simple) is derived from the number we had for the hexa-

hedron, therefore ðqþ 1Þ3 � 2ðqþ 1Þ2 while the number

of determinants (component of the coefficients) is

d5ðd þ 1Þ4, see Table 6.

Remark As compared with an hexahedron, we have a

small gain in terms of computing cost.

In practice Given the nodes of the element, one should

be able to define the control points. The method used for

the hexahedra gives the solutions.

8 Tridimensional incomplete Lagrange elements

First of all, formulae (28) and (29) extend to hexahedra and

simplices and show that the reduced shape functions are

related to the complete shape functions. Then, some of the

complete Lagrange elements have their related incomplete

elements. The method to constructing those reduced ele-

ments is basically the same, e.g. by means of Taylor

expansions while taking into account what polynomial

space we like to have.

Just to give two examples of reduced elements, we

consider the case of a tetrahedron of degree 3 and the well-

known hexahedron of degree 2.

The complete simplex of degree 3 has 20 nodes, and

there is one node by face (and no internal node). The

restriction to such a face is a triangle of degree 3 and the

way to obtain a reduced simplex is to apply what we did for

the bidimensional triangle to the four faces. This results in

an element with 16 nodes.

The complete hexahedron of degree 2 has 27 nodes, and

there is one node by face and one node. The restriction to

such a face is a quadrilateral of degree 2 and the way to

obtain a reduced element is to apply what we did for the

bidimensional quadrilateral to the six faces. This results in

an element with 21 nodes where there is only one internal

node which, in turn, can be suppressed so as to obtain a

20-node element. It could be observed that this element can

also be obtained by means of a transfinite interpolation,

[18].

The method to check the geometric validity is similar to

that used in two dimensions, we invent the ‘‘missing’’

nodes and the ‘‘missing’’ control points prior to apply the

classical analysis of the jacobian polynomial.

9 Conclusion

We have discussed the theoretical framework that makes it

possible to evaluate the geometric validity of the Lagrange

finite elements. The use of the Bézier reading of these

elements gives us a sufficient condition of positivity, a

refinement algorithm being used to make the evaluation

more precise.

As seen in the paper, the practical aspects include two

main technical questions. One the one hand, it is required

to define the control coefficients (this relies to finding the

constitutive determinants or, in other words, to finding the

appropriate indices of the end-points of the vectors

involved in these determinants) and, on the other hand, the

number of control coefficients (and the number of deter-

minants to be computed) rapidly increases with the degree

of the elements under analysis, thus leading to a problem of

computing cost.

To conclude, note that the above theory does not directly

apply to surface triangles and quads since the transforma-

tion is from R2 to R3 and the notion of a jacobian is not well

defined in such a frame. A proper solution could be to

define virtual elements in three dimensions with such tri-

angles or quads as a face and to apply the evaluation

method, now well defined, to the restriction of the jacobian

polynomial to the relevant (tridimensional) faces.

Future investigations naturally include a proper defini-

tion of high-order elements shape quality. We think that

measures using only Jacobians (for example, the ratio of

the min and the max), i.e. volumes are not sufficient to

quantify the regularity of an element. In [19], a measure of

the distortion of an element with respect to its straight-

sided counterpart is introduced before being combined with

the shape quality of the latter thus giving a first method

where the shape is really taken into account.

Appendix

Edge nodes versus control points

In this Appendix, we give some tables where it is shown,

for the first orders (from 1 to 5), how the edge nodes are

related to the edge control points and, conversely, how the

edge control points can be found when the data are made

up of the edge nodes (as it is in the finite element world).

Tables 7 and 8 depict the case of curved edges where

natural indices are used (as it is for quads, quadrilateral

Table 6 Statistics about the pyramids of degree 1 to 5

d #nodes q� q� q #coef #terms

1 5 2� 2� 2 5 8

2 19 5� 5� 5 144 2,592

3 49 8� 8� 8 350 62,208

4 101 11� 11� 11 1043 640,000

5 281 14� 14� 14 2294 4,050,000
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faces, hexes, ...). Tables 9 and 10 are identical but here we

used the indices as they are defined in a barycentric system

(as it is for triangle, triangular faces and tetrahedra), and

therefore, we only give the degree 3. The relation from one

system to the other is as follows (here for the degree 3):

00 10 20 30
300 210 120 030

Since complete elements and reduced elements have the

same boundary edges, the relations hold for both cases.

In the tables, we consider the case of bidimensional

edges but, obviously, this apply to three dimensions after

an adequate labelling of the entities.

Determinants in a control coefficient

We explain how to find the determinants involved in one

control coefficient by considering the case of a quad of

degree d, Relation (27).

At first, it is required to find the appropriate indices i1
and i2 such that (q ¼ 2d � 1)

– (For I ¼ 0; q, (for i1 ¼ 0; d � 1 (for i2 ¼ 0; d

(i1 þ i2 ¼ I)))),

from which we have the pairs ði1; i2Þ therefore the pertinent
vectors together with the associated weights (the factors

C::
::) relative to these indices. Then we do the same for the

indices j1 and j2 so we find the pairs such that

– (For J ¼ 0; q, (for j1 ¼ 0; d (for j2 ¼ 0; d � 1

(j1 þ j2 ¼ J)))),

so we have the pairs ðj1; j2Þ therefore the pertinent vectors

together with the associated weights (the factors C::
::) rela-

tive to these indices. Now, we group together these indices

to obtain the pairs ði1; j1Þ and ði2; j2Þ, the weights and the

number of terms (determinants) in a given coefficient. In

Table 11 and the following schematics, we give details

about the coefficients NIJ when J ¼ 0, note that vector1

span the edge P00Pd0, in the u-direction, from P00P10
����!

to

PI0PIþ1;0
�����!

(top to bottom) while vector2 are the vectors in

the v-direction from P00P01
����!

to PI0PI1
���!

(bottom to top). For

J ¼ 1, we have to repeat the same task but now we have

two pairs in ðj1; j2Þ, one being (0, 1), and the other being

(1, 0), Table 12, increasing the number of determinants in a

given coefficient, etc. Finding all the coefficients clearly

requires writing a computer program.

Table 7 Complete or Serendipity Lagrange quadrilaterals of degree 2

to 5

d Edge nodes in terms of control points

2 A10 ¼ P00þ2P10þP20

4

3 A10 ¼ 8P00þ12P10þ6P20þP30

27

A20 ¼ P00þ6P10þ12P20þ8P30

27

4 A10 ¼ 81A00þ108P10þ54P20þ12P30þA40

256

A20 ¼ A00þ4P10þ6P20þ4P30þA40

16

A30 ¼ A00þ12P10þ54P20þ108P30þ81A40

256

5 A10 ¼ 1024A00þ1280P10þ640P20þ160P30þ20P40þA50

3125

A20 ¼ 243A00þ810P10þ1080P20þ720P30þ240P40þ32A50

3125

A30 ¼ 32A00þ240P10þ720P20þ1080P30þ810P40þ243A50

3125

A40 ¼ A00þ20P10þ160P20þ640P30þ1280P40þ1024A50

3125

Table 8 Complete or Serendipity Lagrange quadrilaterals of degree 2

to 5

d Edge control points in terms of nodes

2 P10 ¼ �A00þ4A10�A20

2

3 P10 ¼ �5A00þ18A10�9A20þ2A30

6

P20 ¼ 2A00�9A10þ18A20�5A30

6

4 P10 ¼ �13A00þ48A10�36A20þ16A30�3A40

12

P20 ¼ 13A00�64A10þ120A20�64A30þ13A40

18

P30 ¼ �3A00þ16A10�36A20þ48A30�13A40

12

5 P10 ¼ �77A00þ300A10�300A20þ200A30�75A40þ12A50

60

P20 ¼ 269A00�1450A10þ2950A20�2300A30þ925A40�154A50

240

P30 ¼ �154A00þ925A10�2300A20þ2950A30�1450A40þ269A50

240

P40 ¼ 12A00�75A10þ200A20�300A30þ300A40�77A50

60

Table 9 Complete or reduced Lagrange triangle of degree 3

d Edge nodes in terms of the control points

3 A210 ¼ 8P300þ12P210þ6P120þP030

27

A120 ¼ P300þ6P210þ12P120þ8P030

27

Table 10 Complete or reduced Lagrange triangle of degree 3

d Edge control points in terms of the nodes

3 P210 ¼ �5A300þ18A210�9A120þ2A030

6

P120 ¼ 2A300�9A210þ18A120�5A030

6
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degree 1 01 11 01 11

00 10 00 10

03 13 23 33
degree 2

Pij vs Nij 02 12 22 32

02 12 22
01 11 21 31

01 11 21

00 10 20 00 10 20 30
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