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Abstract Finite elements of degree two or more are
needed to solve various P.D.E. problems. This paper dis-
cusses a method to validate such meshes for the case of the
usual Lagrange elements of various degrees. The first
section of this paper comes back to Bézier curve and Bézier
patches of arbitrary degree. The way in which a Bézier
patch and a finite element are related is recalled. The usual
Lagrange finite elements of various degrees are discussed,
including simplices (triangle and tetrahedron), quads,
prisms (pentahedron), pyramids and hexes together with
some low-degree Serendipity elements. A validity condi-
tion, the positivity of the jacobian, is exhibited for these
elements. Elements of various degrees are envisaged also
including some “linear” elements (therefore straight-sided
elements of degree 1) because the jacobian (polynomial) of
some of them is not totally trivial.
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List of symbols

K The reference element, K the
current element, Fx the mapping
from K to K, Di»Dij» - - -, a shape
function, d the degree of the finite
element, J the jacobian of K, g the
degree of this jacobian,

A node of K and its image by Fx
The parameters living in the

A;, A, (A, Ajjk, Aijuar)
u, v, w, tor x,y,2
parametric space, e.g. K

A curve and its expression, a
bidimensional patch and its
expression, a tridimensional patch
and its expression,

A control point, Nj; (N, Niju) a
(scalar) control value

The Bernstein polynomial of
degree d for a system of natural
coordinates,

Bf’j(u,v),ng(u,v,w), ..., the
Bernstein polynomial of degree

d for a system of barycentric
coordinates, Cf’ , the binomial
coefficient,

A matrix, a vector, a determinant, the
cross product and the dot product.

I' and y, ¥ and ¢, ©®
and 0, resp

Py (Pijk, Pijir)

B (u)

[ 43l

, (\A.) and

1 Introduction
High-order (p-version) finite elements are employed to

accurately solve a number of P.D.E. with a good rate of
convergence, see [2,3,8,9,21]. The order impacts two
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different aspects, one concerning the geometry, and the
other the finite element approximation. These two aspects
may be combined or not. For instance, a high-order ele-
ment in the case of a straight-sided geometry does not lead
to any difficulty at the time the geometry is considered,
while even a not too high-order element where the geom-
etry is a curved geometry may lead to some tedious
questions, see the pioneering references, [22-24] and [11].
In this paper, we are only concerned with the geometric
validity of high-order meshes of planar or volume domains
with curved boundaries but we are not directly interested in
the finite element aspect, e.g. solution methods and mesh
quality. As regards the validity of a given mesh, a common
idea is that it is sufficient to locate the nodes on the curved
edges without giving any explicit attention to the positivity
of the resulting jacobian. Another idea and one that is
advocated in a number of papers is to evaluate the jacobian
on a sample of points (for example Gauss points) but this is
only a necessary condition. Actually, this works well in
most cases but only if the boundary is not too bended. This
is why we decided to consider this problem by returning to
the purely theoretical point of view with a deliberate
geometric touch, as we did in [7] for tetrahedral elements,
in [16] for quadrilaterals and as can also be found in [19]
and, more recently, in [20] for high-order triangles.

2 Bernstein polynomials, Bézier curves and Bézier
patches

Following [5] and [12], a Bézier curve of degree d is
defined by means of d + 1 control points and the Bernstein
basis. More precisely, let P; € R? or R be those points, the
curve I reads

I = {y(u) = > B{(u)P; with u € [0, 1]} (1)
i=0,d

and, using a system of barycentric coordinates, the same
reads

r= {y(u, v) = Z Bg(u,v)Pij, withu +v = 1} (2)

itj=d

In the above equations, the Bernstein polynomials,
respectively, read as

B (u) = Clul(1 — )™ = ———
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Fig. 1 The Bézier curve of degree 2 related to the control points Py,
P 11 and P()z

and

Cod
Bg(u, v) = Cgu'v’ = Wu’v’ withi +j=d, 4)
- - ilj!

and so on.
In the case where d = 2, I' is an arc of parabola, Fig. 1,
passing through Py and Py, the tangent at P, is parallel to

PyoPq1, that at Py, is parallel to P;;Py,. Let M be the mid-

node of I', e.g. M = y(3), then the tangent at M is parallel
to PoPgy. Moreover, M, in terms of the P;;, reads

2P| + Py + P

M = ) and, conversely, we have
Pl] - f .

This abstract reading of y(u) extends to tensor-product
patches, for instance, in two dimension, and for the degree
d x d, we have

o(u,v) =Y Bl (u)B!(v) Py, (5)

i=0,d j=0,d
and the patch reads as

Y = {o(u,v) with (u,v) € [0,1] x [0,1]}, (6)

and this extends to tridimensional tensor-product patches
(e.g. by defining 0(u,v,w), ®, ... accordingly). Such defi-
nitions will be used to define quadrilaterals, hexes and
quadrilateral faces (in the case of a prism or a pyramid).

As for simplices or triangular faces, it is much more
convenient to use the barycentric form of the Bézier set-
ting, e.g.

X= {o(u,v,w) = Z

Bg»k(u.v,w)P,-jk, ut+v+w=1 }
i+jth=d

(7)
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for a triangle or a triangular face and and
0 d
0 = {Q(M, v, w,t) = Z ngl(u.v,w,t)P,-jkl} (8) . Z Bijk(uy v, )P
it tkti=d itjtk=d
) —d WPk
with u +v 4w+t = 1, for a tet patch. t+1;d | ’Jk (v, W)Piy1jx
Before going further, let us recall the rule of derivation 0
and the rule of multiplication as they apply to Bernstein > Z ng(u, v, W) P
polynomials. For the derivatives, we have itjtk=d
d _ _ =d Z Bt'l‘lzl(uavv W)Pi.jJrl,kv
aBd( u)=d (B?_ll(”) _Bfl 1(”))» ) i+j+k=d—1 ’
0
together with (barycentric coordinates) W Z ng(u, v, W) P
i+j+k=d
0 i d—1
qu V) = d Biy () 10 —q > B v w)Pik, (12)
3 i+j+k=d—1
— B(u, d B! 11
ov U(u v) = W () (11) with, now, the following diagram for the Pys:
Then, it is easy to see that Pood
B(u)P; =d BN (u)PiPiy 1,
du lz():d ; %:_1 i PPy Py opp Poa22
. . ) Pa101 Pa21, Pra21 Poa-11
with the following diagram for the P;s: Puoo Pa-tio Piano Pra2o Pia-io Podo
Py P1 Py---Py1 Pqg
etc.
and Z Z Bd For the multiplication, we have
0.dj=0,d
l " d— 1 Bd B¢ CdCJe Bd+e 13
S B W)B PP (0B} (1) =72 L () (13)
i=0,d—1j=0d i+
Z Z Bd Bd together with
t 0,d j=0,d d e
d e i1 “bjy pd+te
a1 B (u,v)B; . (u,v) = —2—"2B¢*¢ . (u,v 14
¢ ZO:d %:l B ( )P Pl/Jrl’ lm( o ) leljv_jz-x/]+12 R ) ( )
i=0,d j=

with, now, the following diagram for the Pjs:

Poq P Py Pa_14 Paq
Pog1 Pra-1 Prg- Po1a-1 Paa-
Py P Py Pa_11 P
Py Py Py Py 1p Py

etc., and (for a barycentric system)

o Z B (u,v)Pj =d Z Bgfl(u,V)PiH.ja

Hrj i+j=d—1
d—1
& E Bj( ij=d E By (u,v)Piji1,
i+j=d i+j=d—1

with the following diagram for the Pys:

Pgo Py_11 Paop Pia1 Pog

in the case of a curve but also for general patches. These
rules will be of great interest at the time we will compute
the jacobian of the elements in the next sections.

3 Bézier form versus finite element form
of an element

This section briefly recalls the basics of what a finite ele-
ment is and shows that a complete' Lagrange finite element
can be written in terms of a Bézier form. To do this, we
follow [8] and more precisely [9], using the same
notations.

Let K be a geometric element (triangle, quad, tet, etc.),
the Lagrange finite element associated with K is defined by
the triple [K, P, Nodes] where K is the element, P is a set

! incomplete element can also be written in this way but it is more

subtle.
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of polynomials and Nodes is a set of nodes. Actually, K is
constructed as the image of a reference element K,
equipped with a set of reference nodes, by means of a
mapping Fx, e.g. K = Fx(K) and, in turn, Fx is defined by
means of the polynomials in P and we have Fx(A) =
Zi:O.n—l pi(A)Ai, where p; is a polynomial, n is the
number of such polynomials (e.g. the dimension of space
P), A; is the node i of K and A is the value of the parameters
(e.g. for instance, (u, v) or (x,y)) where Fx is evaluated.

Therefore, if we consider K as a patch (such as X in the
previous section), we have (with evident notations)

Z pi(u,v)A;, (u,

i=0,n—1

K:{M(mv)): v)ek}, (15)

in other words, the finite element is defined by means of
shape functions and nodes.

Let us consider now a Bézier form like (here is the case
of a quadrilateral patch)

V=3 > BlwB P

i=0,d j=0.d

where d is the degree of space P and Pj; is a set of control
points, i.e. a patch defined by means of Bernstein polyno-
mials and control points.

As a matter of fact, for a complete element, the space
P is complete so that it can be expressed both in terms
of the above p;(u,v) and the Bernstein polynomials
which are two equivalent bases of the polynomial space.
In other words, we have (with appropriate notations)

Z pi(u,v)A; —ZZBd Bd

i=0,n—1 i=0,d j=0,d

As a consequence, the A;s can be written in terms of the
Pjs and vice versa, and the p;s are linear combinations of
the B¢ and vice versa.

To simply illustrate this point, we return to the simple
case of a Bézier curve of degree 2. It reads

Z BX(u)P; = (1 — u)*Po + 2u(1 — u)P; + u*Ps,
=02

let us define Ao PO,AI

%ﬁy’] and A, = P,, then

Py =Ay, P = M and P, = A, and, replacing the
P;s in the above relation, we have

—Ag — Ay +4A
(1 — Ao + 2u(1 - u)%Jrl + A,

= (1 —u)(1 =2uAo +4u(l —wA; + u(2u — 1)A,,

which is the classical Lagrange form of the curve. This
mechanism applies whatever the degree of the curve and
also applies for the patches themselves. The main interest
is then to replace the finite elements by their equivalent
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Bézier setting, making simpler and systematic the calcu-
lation and the analysis of their jacobian polynomials using
the related convex hull property.

4 Computing and evaluating the jacobian

First of all, we introduce the control points associated with
a given element K (formulae allows for this in the case K is
defined by its nodes, see Appendix). Then, we write the
finite element in its Bézier setting and we express its
jacobian. This polynomial being a product of Bernstein
polynomials (derivatives are multiplied one each other) is,
itself, a Bézier form. Therefore, we have immediately a
sufficient condition of positiveness: the coefficients of the
polynomial must be strictly positive in the case of an
interpolant coefficient and non-negative if not.

Before giving the exhaustive catalogue of elements, we
give a detailed description of the 9-node quad as an
illustration.

4.1 The 9-node Lagrange quadrilateral

The geometric view of a finite element leads us to see it as
a patch defined in a parametric space, here [0, 1] x [0, 1],
the unit-square. Since the 9-node quad is a complete ele-
ment of degree 2, we have

) =Y > BB (v) Py,

i=0,2j=0,2

(16)
using the derivative rule, cf. [12], we have

=2Y "> Bl(wB(v) A}

i=0,1;=0,2

#_22232 A(’l

i=0,2 j=0,1

aauv

and, similarly

with

10 01
Ai,j == H’ll and A P P:H']

Then, the Jacobian matrix (of the derivatives) is

M= { ou v (17)

and the jacobian (determinant of the above matrix) simply
reads

Tluw) =4) > > BB ML,
=0,1,=
PIDIEACLACLIA}
i2:0,2]2—0 1
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As Az P2 Py,

A, As A

Fig. 2 Synopsis of a 9-node quad, node numbering and control point
numbering

or

Tuv)=43" 3" 33 Bl (w)B:(v)B (u)BL(v)

i1=0,1j;=0,2 ,=0,2 j,=0,1

10 01
‘Ail-jl Ainz ’

then using the multiplication rule, cf.[12], we have

and the same holds in v. Hence

1,0 0,1 p3 3
Tuv) =433 > > KinKp,Bi ., (B, (v)

i1=0,11=0,2 i,=0,2 j,=0,1

10 01
i1 i2y2 |
with
1 2 2 1 2
1,0 _ Cil Ciz _ Ciz 0,1 __ C/l Cjz _ Cj]
o= = and K;’, = = .
hz o3 3 23 c3 .
i1+iz i1+iz J1tj2 Jiti2

To complete the final formula, we group together the terms
to find the following generic expression:

J(u,v) =4 Z Z B} (u)B}(v)Qu, (18)

1=0,3J=03

which leads to finding the coefficients Qy;. At the same
time, we know the degree of the jacobian polynomial, 3 in
each direction (# and v) and we see that the number of
control coefficients is 16.

The final formula for the coefficients is
¢ G

Oy = Y Z@ o

iV +ia=I ji+jp=J ~h+i2 “jit

’Al() AL

i1 i2:2

(19)

and, in extenso, after replacing the P; by the A; and C;
(see Fig. 2 for the correspondence of these notations), we
have

2 The true coefficients are Ny =40y.

_— ——
O = ‘AICS A1C3‘
1 — 2
Qo = 3 A1Cs CgAy 3 GGy A1Cy
1 — 2
On = 3 AyCr; A1Cy 3 CyCy  CsAs
— ——
Qo = ‘A4C7 CsAy4 ‘
2 — 1 —
O = 3 A1Cs  Cs5Cy +§ CsA; A1Gy
D s A ——
On = 5 ’AICS Co(Cy ‘ +§ ‘C8C9 CsCy
1 — 2| — —
+3 ‘CSAQ ch4‘ +3 ’cgcf, Alcg’
2 | — — 4 |— —
0n = 5|MG GGl +5|GG GG
1 —— 2| — —
+ 9 ‘ CA3 A1Cy ‘ +§ ‘ CoCs  CgAy4 ’
2 — 1l —
Oi = 3 ‘A4C7 CoCy 3 CiA3; GGy
l)— —— 2 | — —
O = 3 ’AICS AyCs +§ CsA;  Cs5C
1l — — 2 | — —s
O = 5 ‘A1C5 CeA3 +§ CgCy  ArCs
2 — 4| —
+ ) ‘ CsA;  Co(y ‘ +§ ’ CoCe Cs5Cy ‘
l|— —— 2| —
On = 5 AsC; AyGs +§ CsCo  CsAj3
2 — 4|— —
+ § ‘ CiA;  Cs5C9 ‘ +§ ’ CoCe Cy(Cy ‘
l)— —— 2| — ——
On = 3 AyCr CeAs +§ CiA; Gy
_ ——
Q3 = ’ CsAy  AxCs ‘
l|— —— 2| — —
Oy = 3 CsA;  CeAs +§ CoCs  A2Cs
1 — 2| —
On = 3 CiA; AyGCs 3 CoCs  CsAjz
—_—
O3 = ) CiA3  CeAs ‘

It can be observed that the number of determinants in the
coefficients is 36, i.e. 6 x 6 or (4 X 1 +4 X 2x2 +4 x 4),
one term for a corner, 2 terms for an edge and 4 terms for
an internal coefficient, or again and in other words, all the
combinations of all the vectors that can be constructed with
the control points in all the directions.

A precise observation of the “corner” coefficients (such
as Qo) reveals that such coefficients give a control of the
incident tangents thus detecting a potential intersection
between the two incident (edge) curves. The other coeffi-
cients allow for a more precise control of the overall
geometry.

@ Springer
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From this Bézier formulation of the jacobian, Rela-
tion (18), we derive a sufficient condition of positivity.

Validity condition A 9-node quad element is valid if the
four “corner” coefficients are strictly positive, while the
others are non-negative. More precisely, the element is
valid if Qg, O30, Q33 and Qs are strictly positive, while the
other Q;; are non-negative, giving therefore 16 conditions
(this is an immediate consequence of the convex hull
property of Bézier surfaces).

Note that these conditions are not equivalent to having
the jacobian positive at all nodes but are more demanding
(while including this fact).

Refining the condition Since this condition is only a
sufficient condition, it could be too restrictive. This is why,
in some cases, it is possible to refine the condition so as to
progressively approach a necessary and sufficient
condition.

To make the refinement process clear, let us first con-
sider the case where an edge coefficient is negative and
more precisely the case of edge AjA,, i.e. v = 0. Along this
edge, the jacobian polynomial reads (remember that
Njj = 40y)

T (,0) = (1 — u)’Noo + 3u(1 — u)*Nyo + 3u®(1 — u)Nay
+ u N,

let us then assume that Ny, is negative. The process is as
follows:

— compute 7(1,0), if this value is not strictly positive,
the element is not valid, STOP.

— if not, we cut the polynomial into two parts, one living
in [0,4], the other in [J, 1] and we define the two sub-
polynomials by their new control
coefficients,

— having these coefficients, we observe their signs and

iterate the process if necessary.

computing

Hence, we have to compute the new coefficients, this is the
matter of the classical De Casteljau refinement algorithm.
In [0,1], we define the sequence (evaluation at point D

120
Noo + Nio Nio + Noo N + N3o
Ng="rg N ="y N ="y
N+ N NI + NI
then N2, = 00 +Nio N2 = 10+ N
2 2
N2, +N?
and, finally NSO = %

Note that Ngo is exactly J (%,
polynomial is replaced by

J(u,0) =

0). The first part of the

(1 — u)’Noo + 3u(1 — u)*N}y + 3u* (1 — u)N2,
+ 1Ny,

@ Springer

and, similarly, for the second part, we have

T (u,0) = (1 — u)’ N3y + 3u(1

+ M3N30.

u)* N2y + 31 (1 — u)N),

It is trivial to check that these two polynomials are iden-
tical to the initial one, each in its ranging interval. Now, the
important result is that the new coefficients are “closer” to
the polynomial as can be seen by interpreting the polyno-
mial as the Bézier curve y(u) = (u, J (u,0)). Therefore, we
have a finer analysis of this curve or, in other words, of the
sign of the polynomial.

The same idea applies when an internal coefficient is
negative. We introduce a partition of the element into four
parts and repeat the same process (while being more
technically complex in this case).

An alternative method to compute the control coeffi-
cients As pointed out in [7] and [19], there is an alternative
method to obtain the coefficients. Instead of a direct cal-
culation (as before), we solve a linear system whose rank is
that of the jacobian. Actually, as the degree is 3 x 3, the
jacobian polynomial is made up of 16 terms. The idea is
then to compute the jacobian of the Q2 quad at the nodes of
a Q3 quad so as to have relations such as

ZZB% (ux)B

1=0,3J=0,3

T (i, vie) Vk )N

where the couples (uy,vy) stand for the nodes of the Q3
quad, i.e. are all the points defined by the various
combinations of the values [0,373 ,1]. In practice, how-
ever, the corner coefficients reduce to the jacobians
themselves (as an example, Noy = J(0,0)), while the
edge coefficients result from a 2 x 2 system that is easy
to solve by hand. As an example, for edge A;A,, we
have vy, =0 and we consider the two couples
(3,0),(3,0) leading to the system

277 (Bs) = 8Ny + 12N1g + 6N + N3
27\7(36) = Ngo + 6N19 + 12N5p + 8N3)

where Bs and Bg correspond to the above two couples.
Then, we have
Ny =

1 . .
3 (—SNQ() + 18._7(35) —9J(Bs) + 2N30)

1 . R

and N20 = 6 (2N0() — 9J(B5) + 18j(B6) — 5N3())
and similar expressions for the other edge coefficients.
Once all of these have been computed, we have a 4 x 4
system to solve in order to obtain the four remaining
coefficients.
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5 Bidimensional complete Lagrange elements

The shape functions for Lagrange triangles together with
for Lagrange quads can be written using a generic formu-
lation. Let

(- |
— m1]5;57,7&,‘(1 — du) fori # 0and ¢y (u) = 1,
then, the shape function with index ij for a quad of degree
d simply reads

pij(u,v) = ¢;(u);(v). (20)

The generic expression for a triangle of degree d involves
using the system of barycentric coordinates. Let

i) = T4 1),

then, the shape function with index ijk for a triangle of
degree d simply reads

Pijk (1, v, w) = i () ;(v) By (w). (21)

As pointed out in the above example, those expressions are
not easy to consider if one wants to compute the derivatives
and the jacobian polynomial, and therefore, we will write
those elements in their Bézier forms.

5.1 Order 1 or 3-node triangle

The Bézier form and the finite element setting are the same in
this case when the finite element form is written in terms of
the barycentric coordinates. Indeed, we have po(u, v, w) = u,
pi(u,v,w)=v and py(u,v,w) =w which are exactly
Bloo(u,v,w), Bl (u, v, w), Bo, (u, v, w) and the 3 nodes are
the 3 control points. Therefore, the 3-node triangle reads

Y =o(u,v,w) = Z Bl-ljk(u7 v, w) P, (22)
i+jth=1

where the Pys are structured as follows:
Poor

Pioo  Poro-

To become familiar with a system of barycentric coordi-
nates, we fully detail this simple case. Let (x,y) be the
(cartesian) coordinates in K, then the jacobian (in terms of
F¥) is the following determinant:

OFk OFk

% o

i

JJ@W‘

and we consider (in terms of ¢) the Jacobian matrix

0o 0o Oc
[do] = [a N %]7

and we apply the variable change (u =1—x—y, v =1%,
and w = y), denoted by g, then

J = [do] |dg]
holds where
_ % % -
o ool [
v v
= _ _ = 1
[dg] % o 0 |,
a_w 6_w 0 1
|5 oy
therefore,
0 0 0 0
Jg=|L_ 9 9 9%
ov Ou Ow Ou

hence, we have

0c 0o 0o Oo

— — 2___ -
J =1 ou Ow Ov Ow

)

which is a simpler form to express the derivatives since o
and its partials are involved. Using the Relations (12), we
obtain

J = |Pioo — Poo1  Poio — Poot] = [PiooPoio PiooPoor |

and as expected, the jacobian polynomial is constant and is
twice the surface area of the element in hand. The validity
condition resumes to J > 0, remember that Py = Ajj.

5.2 Order d triangles

The finite element (as being complete) is written in a
Bézier form as
d
Y =o(u,v,w) = Z By (u, v, w)Pi, (23)
i+jtk=d
where the Pj;s are structured as shown in Sect. 2 where we
also displayed the partials of such a function . We repeat

what we did for the 3-node triangle to obtain the jacobian
polynomial, we find

Twv,w) = > B v, w)Nu,
I+J+K=2(d—1)

where the coefficients Nyx are

d*]l< d—1
2 i1k~ ijaka
Ny = d Z 20d-1)
itir=lj1+p=J ki+ky=K Ci]+i2,j|+j2,k|+k2 (24)
AIOO 010
i+1jik ir+1yj2ko

with iy +j; +ky =i, +j» + ko =d — 1 and with the fol-
lowing A:

@ Springer
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Table 1 Statistics about the triangles of degree 1 to 6

d #nodes q #coef F£terms
1 3 0
2 6 2 6 9
3 10 4 15 36
4 15 6 28 100
5 21 8 40 225
6 28 10 66 441
00 _p_p 010 _p p
A = PipcPirje and  Apy” = PPyt
The jacobian is a polynomial of degree ¢ = 2(d — 1) and

the number of control coefficients is M which
rapidly increases with g or d as shown in the following
Table 1 where we indicate also the number of terms (e.g.
(M)z) to be computed (some coefficients reduce to one
term while others are the summation of a number of terms).
The geometry of the observed element is valid if the
“corner” coefficients are strictly positive, while the others
are non-negative. As pointed out for the 9-node quad, the
“corner” coefficients control the two tangents incident to a
vertex and it is possible to refine (while being a rather
technical step) the condition in the case where a non-
“corner” coefficient is negative, the “corner” coefficients
being all strictly positive and the jacobian evaluated at the
cutting node(s) used in the refinement procedure being
positive.

In practice Given the nodes of the element, one should
be able to define the corresponding control points. This
implies inverting the matrix defining the nodes in terms of
the control points. Indeed, we have

{A} = [M]{P},
where {A} = {Aijk}ijk and {P} = {Pijk}ijk’

Z Bfljk(u7 v, w) P,

i+j+k=d

Since

o(u,v,w) =

we have

d
Apm = E Bijk(u7 v, W>Pifk
i-Htke=d

k'l m

@ad

thus giving the above matrix, and the
{P} = [M]"" {A}. Actually, it is not strictly required to
inverse the entire matrix, but instead to consider two systems
of alower dimension, one for the edge nodes, and, having the
solution, the other for the internal nodes. For instance, con-
sider w = 0 and the corresponding edge, then because some
of the Bernstein are null, the system to be considered reduces

for the triple (u, v, w) =

solution is

@ Springer

to a (d—1)x (d—1) system. This system gives the
expression of the (edge) nodes in terms of the (edge) control
points, and the inverse gives the expression of the (edge)
control points in terms of the (edge) nodes. Now, we consider

the internal nodes (if any) and this result in a (w —

3d) x (W — 3d) system giving the expression of the
(internal) nodes in terms of the (edge and internal) control
points and the inverse gives the expression of the (internal)
control points in terms of the (internal) nodes and the (edge)
control points. Replacing those points by the solution of the
first system results in the solution. The inverse matrices are
computed once and applied to all the elements in the mesh or
one would prefer using explicit formulae (see Appendix).

In the case of a straight-sided element (and provided the
reference nodes are well located), the element is valid only
if its 1-order associated element has a positive surface area
and, therefore, the geometric validity is obtained for free
(see hereafter how to minimize the cost of the validity
control).

5.3 Order 1 or 4-node quadrilateral

The Bézier form and the finite element setting also coin-

cide in this case. Indeed, we have
poo(u,v) = (1 —u)(1 =), pro(u,v) =u(l —v), pu(u,v)
=uv and po(u,v) = (1l —u)v which are exactly
Bl (u)Bj(v), ... and the 4 nodes are the 4 control points.

Therefore, the 4-node quad reads

=2 > BB )Py,

i=0,1j=0,1

Y =o(u,v) (25)

where the Pys are structured as follows:
Py Pyy
Py Pio,

and, the jacobian polynomial has the form®

=2 B

1=0,1J=0,1

V)Ny,

and therefore, 4 terms and the control coefficients are

Ny = Z Z ’ i1 lz,/z

ir+i=Ij1+jp=J

for/=0,1and J =0,1,

with A = P;Piy1; and A) = PyPyj 1,

therefore, those coefficients (after some permutations) are
=

PP,

Noo = [PooP10o  PooPoil|, Nio = [PooP1o

3 note that this is exactly the same form as the element, this fact is
true only for the degree 2.
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Ny = |P01P10 Py Py |7N01 = |PoiPoo  Po1P11|. Table 2 Statistics about the quadrilaterals of degree 1 to 6
. . d #nodes qxq #coef Fterms

These coefficients measure twice the surface areas of the 4
triangles constructed with the vertices of the quad, and the 1 4 I x1 4 4
validity condition resumes to have these 4 values positive, 2 9 3x3 16 36
and therefore, the validity condition is, with no surprise, to 3 16 5x35 36 144
have the element convex (with P; = A; in the formula). 4 25 7 x17 64 400

5 36 9%x9 100 900
5.4 Order d quadrilaterals 6 49 11 x 11 144 1764

The finite element® (as being complete) is written in a
Bézier form as

o(u,v) =Y Y BB/ (v) Py, (26)

i=0,d j=0,d

and the jacobian polynomial has the form

= > B{(w)Bj(v)Ny,

1=0,q J=0,q

where ¢ = 2d — 1 and the coefficient Nys are
Cd lcd d Li 1

Ny = & Z Z T jclqj

i1 +ir=l j1+jr=J C’l‘HZ J1tj2

’AIO AOL

41 1242

for/=0,gqand J =0, ¢ (27)

WlthAllJo :P,jPi+1J and AOI —P P,J+1,

and with i, =0,d—1,i, =0,d,j; =0,d,j» =0,d — 1.
The jacobian is a polynomial of degree g x ¢ = (2d —
1) x (2d — 1) , and the number of control coefficients is
(g + 1)2 which rapidly increases with g or d as shown in
the following Table 2 where we indicate also the number of
terms (e.g. d*(d + 1)2) to be computed (some coefficients
reduce to one term, while others are the summation of a
number of terms). The geometry of the observed element is
valid if the “corner” coefficients are strictly positive, while
the others are non-negative. As already pointed out, the
“corner” coefficients control the two tangents incident to a
vertex, and it is possible to refine (while being a rather
technical step) the condition in the case where a non-
“corner” coefficient is negative, the “corner” coefficients
being all strictly positive.

Remark  As compared (see the two Tables 1 , 2) with
triangles, quadrilaterals have a jacobian with a higher
degree and, in turn, the number of control coefficients is
largely much more high for a given degree.

In practice Given the nodes of the element, one should
be able to define the corresponding control points. This

* While not being necessary, we consider the case where the degree is
the same in both directions.

implies inverting the matrix defining the nodes in terms of
the control points. Indeed, we have

{A} = M]{P},
where {A} = {Aij}i' and {P} = {PU}U Since

aluv) = > BB ()Py,

i=0,d j=0,d
we have
Au=Y_ > BlwB (P,
i=0,d j=0,d

for the couple (u,v) = (£,1), thus giving the above matrix

and the solution is {P} = [M] ™' {A}.

Actually and as for triangles, it is not strictly required to
inverse the entire matrix but, instead to consider two sys-
tems of a lower dimension, one for the edge nodes, and,
having the solution, the other for the internal nodes. For
instance, consider w = 0 and the corresponding edge, then
because some of the Bernstein are null, the system to be
considered reduces to a (d —1) x (d — 1) system. This
system gives the expression of the (edge) nodes in terms of
the (edge) control points, and the inverse gives the
expression of the (edge) control points in terms of the
(edge) nodes. Now, we consider the internal nodes (if any)
and this results in a (d — 1)* x (d — 1)? system giving the
expression of the (internal) nodes in terms of the (edge and
internal) control points, and the inverse gives the expres-
sion of the (internal) control points in terms of the (inter-
nal) nodes and the (edge) control points. Replacing those
points by the solution of the first system results in the
solution. The inverse matrices are computed once and
applied to all the elements in the mesh or one would prefer
using explicit formulae (see Appendix).

In the case of a straight-sided element (and provided the
reference nodes are well located), the element is valid only
if its 1-order associated element is convex (therefore 4
surface areas must be computed) and, thus, the geometric
validity is obtained for free.
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6 Bidimensional incomplete Lagrange elements

Incomplete or reduced elements have a reduced number of
nodes (typically, the edge nodes are those of the complete
elements, while the number of internal nodes is zero or
smaller than that in the complete element). Low-degree
elements are well documented in the literature, at least for
quad geometries (8-node quad of degree 2) and for the
9-node triangle of degree 3. The polynomial space is also of
a smaller dimension as compared with the complete space.
There are different methods to define reduced elements
among which we have the Serendipity elements where
space P is rich enough to achieve a good level of precision.
One method specifies space P and, given an adequate
number of nodes, constructs the shape functions by solving
an adequate system satisfying the desired properties.
Another method makes use of Taylor expansions in order
to eliminate the internal nodes. Whatever the method, the
shape functions have a generic expression (such as (20),
(21) for the complete Lagrange elements). Let us consider
the case of a tensor-product complete element and let pj; be

its shape functions, then we have

ki

pij(u,v) = pj(u, v —I—Zcxupz, u,v) (28)
where indices ij correspond to the edge’ nodes and indices
ki are those related to the internal® nodes of the complete

kl . . . . -
element and o;; is a coefficient (of repartition, how py
contributes to p;;). For reduced simplices, we have a similar
generic expression

Pie(a, v, w) = pi (v, w) + D aiph, (v, w). (29)

Imn

The topic of this paper is not to give a detailed discussion of
reduced elements’ but, instead, given a reduced element, to
find the conditions that give guarantee about its geometric
validity. The main idea is, given such an element in a mesh,
to return to a complete element equivalent to this reduced
one and then to apply what we did previously for complete
elements. It turns out that this requires to properly invent the
“missing” nodes and the “missing” control points.

6.1 Order d Serendipity triangles

To have at least one internal node, we need to have d = 3,
so we meet the complete triangle of degree 3, the well-

5 actually, for some reduced elements, one or several internal nodes
of the complete element are retained as nodes for the reduced
element.

6 cf. infra.

7 and the way in which they are constructed, a paper being currently
under preparation to do this

@ Springer

known 10-node triangle, where we have only one internal
node and the numbering of the nodes is as follows:

003 003
102 012 ==> 102 012
201 111 021 201 021
300 210 120 030 300 210 120 030

A Taylor expansion, based on the fact that the reduced
polynomial space must contain the space P! = P? (in
terms of the variables x and y, the span of P? is made up of
1,x,y,xy,x> and y?), is used to express the edge values of a
generic function (let ¢ be this function) in terms of the
internal value of this function, cf. [4], leads to a relation®

like
1261<A111 +ZZ Ay — 32 A

30
ijkey ijke& ( )

where Al 11 is the point, in the reference element (I%) of
coordinates (§,%,1), V stands for the set of vertices in K
and & stands for the set of edge nodes in K. Since the
piik(u,v,w)s enjoy the same properties, for all the indices
ijk, we have

12Pijk(A111) +2 Z Pijk (Slmn) -3 Z pijk(Almn) =0.

Imney Imne&

Now, we use Relation (29) to replace the p;; by their
counterpart in terms of the complete shape functions. For
symmetry reasons, this relation reduces to

pi(u,v,w) = piy (u,v,w) + apiy, (u, v, w) for ijk €V,
and
pi(u,v,w) = piy (u,v,w) + Bpiy, (u,v,w) for ijk € £,

in other words, there are only two coefficients. Let us fix ijk
= 300, then, we have

12p300(A111) +2 Z 2300(Sin) — 3 Z P300(An) =0,

Imney Imne&
and this resumes to
= ——,
6
and the same (fix {jk = 210) implies that f§ = %. With these

values, we have the reduced shape functions fully defined
via (29).
Then the reduced element seen as a patch reads

E pljk u, VW ijk »

ijk

MVW

8 the so-called Serendipity relation.
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where ijk lives in V and &, i.e. 9 indices. We replace again
the p; by means of the pfjk, then we have

M(”a v, W) = Z (pltjk(uv v, W) + (xijkp?] 1 (I/t, v, W)) Aijka
ijk
with o = o or B, then this reads also

M(.,.,.)= Z Pl (v, w) Ay + ZagkAykpfll(u,v, w),
ijk ijk

therefore, let
A = Z kA
Tk

so that

E pl]k u, VW ijk s

ijk

I/IVW

with now 10 indices. In other words, we have invented the
node Aj;; with which we can define a complete element
fully equivalent to the reduced element. As already seen, a
complete element is equivalent to the Bézier patch

Z B?jk(u, v, W) P,

i+j+k=3

from which we obtain P;;; and it turns out that Py simply
reads as

P = E ik Pijie
i

e.g. the same expression as Ajy;.

In practice The 9-node triangle is easy to analyse. Given
its nodes, we find its edge control points by the formulae
(see Appendix) and then we compute P;; using the above
formula. Then, just use Relation (24) to have the control
coefficients of the jacobian.

It is a rather technical task to discuss about higher order
reduced triangles, and therefore, we do not pursuit this
story of reduced triangles, see [17].

6.2 Order d Serendipity quadrilaterals

For d = 2, we have the 9-node quad with one internal node
and the numbering of the nodes is as follows:

02 12 22 02 12 22
01 11 21 ==> 01 21
00 10 20 00 10 20

As for the above triangle, in this case, we impose the space
P? = P? to be included in the reduced polynomial space.
Then, the Taylor expansion gives the Serendipity relation

a($) -2 ald) =0, (31)

where Ay, is the point, in the reference element (K), of
coordinates (5,2) S is vertex j of the reference element
and the Ajs are the edge nodes of the reference element.

Since the p;j(u,v)s enjoy the same properties, for all the
indices ij, we have

Zpl] Slm _22171] Alm = 7

Imey Ime&

4plj All

where V stands for the set of vertices in K and & stands for
the set of edge nodes in K. Now, we use Relation (28) to
replace the p;; by their counterpart in terms of the complete
shape functions. For symmetry reasons,
reduces to

this relation

=pj(u,v) +opij(u,v) for Ge,

= p;(u,v) + Bpj;(u,v)  for

pij(uv V)
and  p;(u,v) ijeé&,

in other words, there are only two coefficients. Let us fix ij
= 00, then, we have

Zpoo Slmn - ZZPOO Alm =0,

Imey Ime€

4poo ( A11

and this resumes to

and the same (fix ij = 10) implies that f = % With these
values, we have the reduced shape functions fully defined
via (28).

Then, the reduced element, seen as a patch reads

v) =3 pilu Ay,
ij

where ij lives in V and &, i.e. 8 indices. We replace again
the p; by means of the pf;, then we have

- Z(pu(” v) + oy (u,v) ) Ay,

ij

M(u,v)

with o; = o or f8, then this reads also
V) = Z plcj(u7 V)Aij + Z O‘iinjPﬁ(”v V)v
ij ij
therefore, let
A]] = Z OC,'jA,‘j,
ij

so that

V) = Z plcj(u7 V)Aija
ij

@ Springer
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with now 9 indices. In other words, we have invented the
node A;; with which we can define a complete element
fully equivalent to the reduced element. As we already
seen, a complete element is equivalent to the Bézier patch

S Y BwB Py,

i=0,2j=0,2

from which we obtain P;; and it turns out that P;; simply
reads as

Py = E ;i Pij,
ij

e.g. the same expression as Aj;.

In practice The 8-node quad is easy to analyse. Given its
nodes, we find its edge control points by the formulae (see
Appendix) and then we compute P;; using the above for-
mula. Then, just use Relation (27) to have the control
coefficients of the jacobian.

Higher order reduced quadrilaterals can be defined but,
as it is for triangles, this is a rather technical task, and
therefore, we do not pursuit this story of reduced quads, see
[1] or [13] for the Serendipity family.

7 Tridimensional complete Lagrange elements

Formulae (20) and (21) extend to hexahedra and simplices
and give the shape functions.

7.1 Order 1 or 4-node tetrahedron

We play again the story of the 3-node triangle. The Bézier
form and the finite element setting coincide in this case
when the finite element form is written in terms of the
barycentric coordinates. Indeed, we have po(u, v, w,t) = u,
pi(u,v,w,t) =v, pa(u,v,w,t) =w and p3(u,v,w,t) =1t
which are  exactly Bl (u,v,w),  Bhyoo(u, v, w),
Blyo(u,v,w) and By, (u, v, w) and the 4 nodes are the 4
control points. Therefore, the 4-node tet reads

O =0(u,v,w,t) = Z B}jkl(u,v,w, )Py (32)
i rhti=1

Let (%,7,2) be the (cartesian) coordinates in K, then the
jacobian (in terms of F) is the following determinant:
OFkx OFk OFk

J =059 = |5 oy 0z

while (in terms of 6) we consider the matrix

00 00 00 00
[Mbmma}

@ Springer

and with the variable change (u=1—-x—y—2, v =21,
w =y, and ¢t = 7), denoted by g, we have

J = [d0] [dg],
where
AR
ox oy 02
ov Ov Ov -1 -1 -1
& m @l |0 o
[dg] = ow ow ow| 0 1 o |’
ox 0y 0z 0 0
a o
LOox Oy 07
therefore
g |0 20 @ 0w
" |ov Ou Ow Ou O Ou

and after manipulating this determinant, we find

00 o0 00 00 00 00

= (—1)P|=-= =_= Z_=Z
j()éuﬁtavatawat’

which is a simpler form to express the derivatives since 0
and its partials are involved. Using relations (now in three
dimensions) like the Relations (12), we obtain

J = —|Piooo — Pooor  Poroo — Pooor  Pooio — Pooot|

= |P1oooPo1oo  PioooPooto  PioooPooot |,

as expected, the jacobian polynomial is constant and is (at a
scaling factor) the volume of the element in hand. The
validity condition resumes to J > 0 with Py = Ay in the
formula.

7.2 Order 1 or 6-node prism

The Bézier form of a 6-node prism or pentahedron involves
a barycentric form in X,y and a tensor-product form in Z,
and therefore, with adequate notations, we have

Z Zszk i, v, w) B} (1) Py, (33)

i+j+k=11=0,1

O(u,v,w,t) =

withu+v+w=1lu=1—-x—y,v=x,w=yandt =7
and Pjj; the control points (i.e. the vertices). The jacobian
reads

00 00 00
ou ow ov

o0 o0

and using the formulae in Sect. 2, we have
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1)(Pioor, — Poorr,)-

ZB

_
Z B;ik(u,v,w)Bg(t)Pijk()Pijkl R
i+jtk=1

)(Poior, — Pooir,)

or

J = Z Z ZB Bll2 l]k(u,v,w)

i+jtk=11=0,1 =

’ Proor, Pootr,  Poron,Pootr,  PijroPijk1 |,
or again

J(u,v,w,t) = Z B (u, v, w)Bi(t)NHKL

I+J+K=1L=02

where [ =i,J =j,K=k and L =1+, and with the
control coefficients

Nykr = Z

I +L=L 11+lz

Poors, Poron,Poots, PIJKOPIJK1’

which also reads

NyxL = Z

Lh+bhL=L

— ‘P1001,P0101] Proor, Poor, PrixoPrki ’

The degree of the jacobian polynomial is 1 in (&, v, w) and
2 in ¢, the number of control coefficients is 9. The element
is valid if its 6 corner coefficients are positive, while the 3
others are non-negative. Note that 12 determinants’ have to
be computed to obtain the 9 control coefficients. A corner
coefficient, like Nygog, measures the volume of tetrahedron
PooooPo10oPooioPooor (at a scaling factor). The “vertical”
edges have a control coefficient with 2 terms, for example,
we have

1
N1001:§|P1001P0101 PioooPooio  ProooP1oot ]

+ 3 |P1o0oPoroo  Pioo1Pooir  PioooProot]-

Such a coefficient gives a control about a possible rotation
(torsion) from one triangular face to the other or, in other
words, the geometry of the quadrilateral faces. In the case,
a quadrilateral face is planar, it is easy to see that the
corresponding (e.g. the 3) edge coefficients are linear
combinations of the corner coefficients, and therefore, only

° This number of terms is exactly the number of combinations
between the triples of all the vectors that can be constructed with the
vertices of the element, e.g. 4 with respect to (u, v, w) and 3 with
respect to f, therefore 4 x 3. Note that this property holds for all the
elements and whatever the degree.

6 coefficients are necessary to control the validity an ele-
ment with planar faces. To prove this, just write, for

example, in coefficient NIOOI, P]OOIPOIOI = OCP]QOQP()]OQ +

—_— —_—> . . .
BP1oooP1oo1 and replace Pigo1Poror by this expression in
Nigo1-

7.3 Order 1 or 8-node hexahedron

As will be shown (and, somehow, surprisingly), the geo-
metric validity of this a priori simple element involves a
large number of calculations. The Bézier form of a 8-node
hexahedron is

=2 2. > BW

i=0,1j=0,1 k=0,1

(u, v, w) By (w)Pij (34)
with u, v and w in [0, 1] and P the control points (i.e. the
vertices). The jacobian reads

00 00 00
J(u,v,w): a a E’v

and using the formulae in Sect. 2, we have

Z Z B PO]kPl]kv
j=0,1 k=0,1
and then
—_—
I (u,v,w) = B} (v)Bi (w)Pojx Pijx

SO

Tuvw) = 3 2 2 2 2 D

1=0,1 k1=0,1 7=0,1 k»=0,1 i3=0,1 j3=0,1
B} (v)By, (w)B}, (u))By, (w)B} (u)B], (v)

‘POjlkIPIjlkl Pio,Pisik,  Pinjs0Pisjs1 |

and, by the multiplication rule, we have

= > > Y Biu)Bj(v)Bx(w)Nik

1=0,2J=0,2 K=0,2

T (u, v, w)

where the control coefficients are

N 1
IJK — E E E C2 Cz C2
tiz=1ji+j3=] ki+ky=K 1 ~J~K

‘POjlkIPljlkl Piok, Piyik,  PisjsoPisjsn
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The jacobian is a polynomial of degree 2 in each direction.
There are 27 control coefficients involving 64 determinants
(4 x 4 x 4). We have four type of coefficients, the corner,
the edge and the face coefficients and one volume coeffi-
cient (Ny11). The corner and the edge coefficients provide
the same control as in the prism but, here, we have one
coefficient for each face and one internal coefficient. In the
case where the faces are planar, the edge and the face
coefficients are redundant with the corner coefficients
(same proof as for the prism) but we do not find any
relation between N and those coefficients. It means that
an element with planar faces is controlled by 9 coefficients
(and not only 8).

7.4 Order 1 or 5-node pyramid

We find in various papers a definition for this 5-node ele-
ment using rational polynomial as shape functions which
leads to a singularity in the jacobian polynomial (which is
oo for w = 1). Other references propose using classical
Lagrange polynomials. This is our choice and we define the
pyramid as an hexahedron with a degenerescence for
w = 1. This way of construction leads to very simple cal-
culations, while we still have a singularity (the jacobian is
zero for w = 1).

Therefore, we use (34) with P;; = Poo1, V(i,/), then
O(ivn)| = 3= 5= 32 BB/ 0)8L01Py
i=0,1/=0,1 £=0,1
O (u,v,w) Z ZB] By (w w)Pjjo
i=0,1;=0,1
+ > Bj(u)B](v)B](w)P;,
i=0,1,/=0,1

and Yo, >0, Bl (u)B}(v) factorizes, so we simply
have

O(u,v,w) ZZB ()Pijo

i=0,1j=0,1 (35)
+B} (W)P()(n
from which we easily define the 5 shape functions.

The jacobian polynomial is that of the 8-node hexahe-
dron but a number of terms are null so we have

J(u,v,w) = ZB PO]OPIJO
j=0,1
—>
B( )PiooPito
i=0,1
—
B} (w)B} (v)PyoPy1 |,

@ Springer

and then

Juvw) = 3 3. 2 2

1=0,1 i,=0,1 i3=0,1 j5=0,1

B} (v)By(w)BY, (u))BY(w)B}, (u)B}, (v)

PojoP1j0  PiooPi10  Pisjs0Piys1 |5
written as
j(um,w) = Z Z B%(M)Bg(V)B%(W)NUO

1=0,27=02
where the control coefficients are

NIJO_ Z Z C2C2

irt+iz=lji+j3=J

PiooPi10  PiyjyoPisjs1

Poj 0P1j0

The jacobian is a polynomial of degree 2 in each direction.
A priori, there are 9 control coefficients involving 16
determinants (2 x 2 x 4). We have three types of coeffi-
cients, the corner and the (horizontal) edge coefficients and
one face coefficient (Njp). The corner and the edge coef-
ficients provide the same control as in the previous ele-
ments and we have one coefficient for the quadrilateral
face. Actually, the edge coefficients are redundant with the
(first four) corner coefficients, and the number of effective
coefficients reduces to 5. The reason is due to the fact that
all the “vertical” vectors meet at the “top” vertex (so that
the “vertical” quadrilateral faces degenerate in triangular
faces). Due to the polynomial B2(w)= (1 —w)?, the
jacobian vanishes when w = 1.

7.5 Order d tetrahedra

We use the definition (23) to discuss the case of a degree
d tetrahedron and, now, its reading is

O =0(u,v,w,t) = Z B?jkl(u,V,W,I)Pijkl; (36)
i+jtktl=d

where the Pyys are the control points. We repeat what we
did for the triangle of degree d to obtain the jacobian
polynomial, and we find

3(d-1
T (u,v,w,t) = Z By (v, w,0)Nyke,
[4+J+K+L=3(d~1)

where the coefficients Nyjk; are

d—1 d—1 d—1

1JKL — 3(d—1)
; . C
li|=Lljl=J [k|=K Jl|=L LKL
1000 0100 0010
A11+1J1k1[1 Alz-H]zkzlz i3+ 13ksls |2 (37)
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with |l‘ =i+i+1i3 ....,and withi; +j, + ki + 1} =i, + Table 3 Statistics about the tetrahedra of degree 1 to 5
J2 + k2 —+ 12 =13 +13 —+ k3 —+ l3 = d — 1 and Wlth the fOl- d #nodes q #coef #terms
lowing A:
T S— 0100 _ 5 p ! 4 0 ! !
Aja” = PigiPicvjrins,  Dja = PigPi1jrer 2 10 3 20 64
010 _p_p .
and A% = PP i 3 20 6 84 1,000
4 35 9 220 8,000
The jacobian is a polynomial of degree ¢ = 3(d — 1). The 5 56 12 455 42,875
number of control coefficients is w , and the
number of determinants involved in these coefficients is
(dx(tzlﬂ) + (dle)d + .. ,)3, see Table 3. Table 4 Statistics about the pentahedra of degree 1 to 5
In practice Given the nodes of the element, one should d #nodes gxq #coef Hterms
be able to define the control points. For the control points | 6 %2 0 1
corresponding to the edges, the formulae are identical to
. . . . 2 18 4x5 90 972
what we have in two dimensions (see Appendix), for those
. . . . 3 40 7x8 324 17,280
corresponding to a face, the solutions given for a triangle
. . 4 75 10 x 11 792 150,000
apply. For the eventual internal control points, one has to
. 5 126 13 x 14 1575 850,500
solve the corresponding system.
7.6 Order d prisms
where the coefficients Ny, are
The Bézier form of a degree d prism or pentahedron d— d d d—1
. . g A P p A 3 Clljl lzlzkz Clzhkz Cll C/2C13
involves a barycentric form in x,y and a natural form in Z, Nykr = d Z 302031
and therefore, with adequate notations (and the same lil=1,lj|=J,|k|=K |l|=L VK TL
degree in all directions), we have
AL00 010 0001 (39)
@(u v, w, l Z ZBl}k M v, w Bl( )Pijkh (38) i+ 1kl i>+1j2kaln i3j3ksls |2

i+jtk=d [=0,d

withu+v+w=1lLu=1—-x—y,v=x,w=yandr =72,
and Py the control points (i.e. the vertices). The jacobian
reads

00 00 o0 o0 00

- (—1 v v
j()auawavawat’

and using the formulae in Sect. 2, we have

d
_ d (A 100
J = Z i1, kl Lt Vs W)Bll( )All+1J1 ki
i+ +ki=d—11,=
d
Z d—1 d /2 AO10
Bzyz ko (M, v, W)Blz( )A12+112 ky
ir+Hja+ky=d—1 5L, =0
d—1
d -l g
> B (v, w)BE (0Pt P 1
i3+j3+k3=d [3=0
with
T s S — R
Ay = PiaPiz1j1s and Ay = PyaPioy i

Grouping together the Bernstein leads to

3d—1

Ty = > B (v, w)BE T (ONyk

I+J4+K=3d—-2 L=0

where |i| =iy + i + i3, ..., and with i; +j1 +k =i +
otk =i3+j3+ks =d-111=0d,5L=0,d 5=
0,d — 1 and with the following A:

0 _ 53— 00 _ 53—
Aji = PiPicrjeris, By = PiaPio1jk+11
00l _ 5
and Ay = PiiPijiis-

The jacobian is a polynomial of degree ¢ x ¢’ = (3d —
2) x (3d — 1) and the number of control coefficients is

(¢ + 1)% , while the number of determinants

(component of the coefficients) is d(d + 1)°(d +2), see
the table (Table 4).

Remark As compared (see Tables 3, 4) with tetrahedra,
prisms have a jacobian with a higher degree and, in turn,
the number of control coefficients is largely much more
high for a given degree.

In practice Given the nodes of the element, one should
be able to define the control points. As for the previous
elements, the control points corresponding to the edges are
obtained using the formulae we have in two dimensions
(see Appendix) and for those corresponding to a face, the
solutions given for triangular or a quadrilateral apply. For
the eventual internal control points, one has to solve the
corresponding system.
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Table 5 Statistics about the hexahedra of degree 1 to 5

d #nodes gxqgxgq #coef F£termss

1 8 2x2x%x2 27 64
2 27 5x5x%x5 216 5,832
3 64 8x8x8 512 110,592
4 125 11 x 11 x 11 1,331 1,000,000
5 216 14 x 14 x 14 2,744 5,832,000

7.7 Order d hexahedra

We use the definition (26) to discuss the case of a degree
d hexahedron (with the same degree in the three direc-
tions), so we have

d
0w, v,w) = > > > BI@B(MB{W) Py, (40
i=0,d j=0,d k=0,d
and, the jacobian polynomial has the form
T (u,v,w) Z Z Z B} (u)B4(v)BL (W)Nyk,
1=0,gJ=0,g K=0,g
where ¢ = 3d — 1 and the coefficients Ny are
Cd lcdcd Cdcd lcd
T NI
[i|=I jl=J |k|=K ! 7
d ~d d—1
Ckl Ckz Cks 100 010 001 (41)
CI‘I< ijiki i2jok2 izj3ks |2
. s _
with Ailj(]:() = Py Pi1jk, AZ/ICO = PycPiji1k

001 ?
and Aijk = PijkPijﬁk—o—ly

ii=0,d—1,i, =0,d,i3=0,d,.... The jacobian is a
polynomial of degree g x g x ¢ = (3d — 1) x (3d — 1) x
(3d — 1) and the number of control coefficients is (g + 1)* ,
while the number of determinants (component of the coef-
ficients) is (d(d + 1)*)*, see Table 5

Remark As compared (see Tables 3, 4, 5) with tetrahedra
and prisms, hexahedra have a jacobian with a higher degree
and, in turn, the number of control coefficients is largely
much more high for a given degree, even more than the
triangles versus the quadrilaterals in two dimensions.

In practice Given the nodes of the element, one should
be able to define the control points. As for the previous
elements, the control points corresponding to the edges are
obtained using the formulae we have in two dimensions
(see Appendix) and for those corresponding to a face, the
solutions given for a quadrilateral apply. For the eventual
internal control points, one has to solve the corresponding
system.

@ Springer

7.8 Order d pyramids

We define these elements by the same way we used to
define the 1-order pyramid, and therefore, we have

= > 3> BIu)B{(v)B{(w) Py

i=0,d j=0,d k=0,d

with Pjjy = Pyoq for all couple (i, j). Then

O(u,v,w) = >N > B (u)B(v)BL(w) Py
i=0,d j=0,d k=0,d—1
+ > B (u)BY (v)BY (W) Poou,
i=0,d j=0.d
and Z Z Bd ) factorizes so we have
i=0,d j=0,d
0w v,w) = > > > BB (v)Bi(w) P
i=0,d j=0,d k=0,d—1
+ B4 (w) Pooa,

where B%(w) = w’, from which we can easily define the
shape functions.

The jacobian polynomial is that of the order-d hexahe-
dron but a number of terms is null so, as previously, we
have

\7(”7V7w) = Z Z Z B;](M)Bg(v)

1=0,q J=0,g K=0,q

BY.(w)Nyk,

where ¢ = 3d — 1 and the coefficients Njjx are

Cd lcdcd Cdcd lcd

b i3 —J1 _J2

N = 359

q q
lil=1 ljl=J [k|=K G €
d (d cd-1
C S Gy |AI00  A010 - ADOL |
C?( i1jiki i2j2kz l%l%k3 ’
; 100 _ B p. 2 AOI0 _ B p .
with A" = PPt ji, Ay = PijePijr1k
0l _p_p.
and Azjk :PijkPij,k+1-
(43)
- .
When k =d, AlY® = A%’ = 0. Since k; =0,d — 1,k, =

0,d—1,k3=0,d—1 and K = k; + kp + k3, the maxi-
mum in K is 3d — 3 and then (1 —w)? factorizes and the
Jacobian has a singularity at w = 1, J(u,v,1) = 0, and, in
fact, the jacobian reads

=22 > 5

1=0,q J=0,g K=0,4’'

T (u,v,w) Bi(v)BL(w)Nyk,

where ¢ = 3d — 1 but with ¢’ = 3d — 3, meaning that some
coefficients are missing.

The jacobian is a polynomial of degree g x g X ¢’ =
(3d — 1) x (3d — 1) x (3d — 3) and the number of control
coefficients (apart for the degree 1 which is much more



Engineering with Computers (2016) 32:405-424

421

Table 6 Statistics about the pyramids of degree 1 to 5

d #nodes gxqgxgq #coef F£terms

1 5 2x2x%x2 5 8
2 19 5x5x%x5 144 2,592
3 49 8x8x8 350 62,208
4 101 11 x 11 x 11 1043 640,000
5 281 14 x 14 x 14 2294 4,050,000

simple) is derived from the number we had for the hexa-

hedron, therefore (g -+ 1)° —2(q + 1)* while the number
of determinants (component of the coefficients) is

d5(d + 1)*, see Table 6.

Remark As compared with an hexahedron, we have a
small gain in terms of computing cost.

In practice Given the nodes of the element, one should
be able to define the control points. The method used for
the hexahedra gives the solutions.

8 Tridimensional incomplete Lagrange elements

First of all, formulae (28) and (29) extend to hexahedra and
simplices and show that the reduced shape functions are
related to the complete shape functions. Then, some of the
complete Lagrange elements have their related incomplete
elements. The method to constructing those reduced ele-
ments is basically the same, e.g. by means of Taylor
expansions while taking into account what polynomial
space we like to have.

Just to give two examples of reduced elements, we
consider the case of a tetrahedron of degree 3 and the well-
known hexahedron of degree 2.

The complete simplex of degree 3 has 20 nodes, and
there is one node by face (and no internal node). The
restriction to such a face is a triangle of degree 3 and the
way to obtain a reduced simplex is to apply what we did for
the bidimensional triangle to the four faces. This results in
an element with 16 nodes.

The complete hexahedron of degree 2 has 27 nodes, and
there is one node by face and one node. The restriction to
such a face is a quadrilateral of degree 2 and the way to
obtain a reduced element is to apply what we did for the
bidimensional quadrilateral to the six faces. This results in
an element with 21 nodes where there is only one internal
node which, in turn, can be suppressed so as to obtain a
20-node element. It could be observed that this element can
also be obtained by means of a transfinite interpolation,
[18].

The method to check the geometric validity is similar to
that used in two dimensions, we invent the “missing”

nodes and the “missing” control points prior to apply the
classical analysis of the jacobian polynomial.

9 Conclusion

We have discussed the theoretical framework that makes it
possible to evaluate the geometric validity of the Lagrange
finite elements. The use of the Bézier reading of these
elements gives us a sufficient condition of positivity, a
refinement algorithm being used to make the evaluation
more precise.

As seen in the paper, the practical aspects include two
main technical questions. One the one hand, it is required
to define the control coefficients (this relies to finding the
constitutive determinants or, in other words, to finding the
appropriate indices of the end-points of the vectors
involved in these determinants) and, on the other hand, the
number of control coefficients (and the number of deter-
minants to be computed) rapidly increases with the degree
of the elements under analysis, thus leading to a problem of
computing cost.

To conclude, note that the above theory does not directly
apply to surface triangles and quads since the transforma-
tion is from R? to R? and the notion of a jacobian is not well
defined in such a frame. A proper solution could be to
define virtual elements in three dimensions with such tri-
angles or quads as a face and to apply the evaluation
method, now well defined, to the restriction of the jacobian
polynomial to the relevant (tridimensional) faces.

Future investigations naturally include a proper defini-
tion of high-order elements shape quality. We think that
measures using only Jacobians (for example, the ratio of
the min and the max), i.e. volumes are not sufficient to
quantify the regularity of an element. In [19], a measure of
the distortion of an element with respect to its straight-
sided counterpart is introduced before being combined with
the shape quality of the latter thus giving a first method
where the shape is really taken into account.

Appendix
Edge nodes versus control points

In this Appendix, we give some tables where it is shown,
for the first orders (from 1 to 5), how the edge nodes are
related to the edge control points and, conversely, how the
edge control points can be found when the data are made
up of the edge nodes (as it is in the finite element world).

Tables 7 and 8 depict the case of curved edges where
natural indices are used (as it is for quads, quadrilateral
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Table 7 Complete or Serendipity Lagrange quadrilaterals of degree 2
to 5

d Edge nodes in terms of control points
_ P +2P1o+P,

2 Ay = tw 4|o 20
_ 8Poy+12P19+6Py+P3

3 Ay = 27

_ Poo+6P10+12P2+8P3
A20 - 27
4 A = 81A00+108P19+54P20+12P30+A40
10 = 256

— A +4P10+6P20+4P30+A40
AZO - 16

Ay = AOD-H2P|0+541;2506+1()8P30+81A40

5 Ao — 1024400+ 1280P 10 +640P20+160P30 +20Punt+Asn
10 = 3125

Aoy — 243A0+810P10-+1080Py+720P3 +240Psn+32A50
20 = 3125

Ang — 32A400240P10+720P20+1080P30 +810Pso+243As0
30 = 3125

A — Ant20P1o +160P2 +640Ps0 1 1280Psg 11024450
40 = 3125

Table 8 Complete or Serendipity Lagrange quadrilaterals of degree 2
to 5

d Edge control points in terms of nodes
2 _ —Aw+4A10-Axn
P 10 2
3 Py = —5A0+18A10—9A+2A3
6

__ 2A00—9A10+18A20—5A3
Py = 2w 106 20 30

4 Pio = —13A00+48A10—36A20+16A30—3A49
10 — 12

__ 13400 —64A,0+120A20 —64A30+13A.
Py = 00 10 1820 30 40

Py = —3Aqg+16Am—36]/;zo +48A30—13A49

—77A0g+3004 10—300A4 20 +200A30 —75A40+ 124
5 Py = 00 10 600 30 40 50

Py — 269400 = 1450410+2950A50 2300413 +925410—154As50
20 = 240

Py — —154A00+925410~230045042950A30 1450440+ 269450
30 240

Pu = 12A00—75A10+200A20 —300A30+300A49—77As0
40 60

faces, hexes, ...). Tables 9 and 10 are identical but here we
used the indices as they are defined in a barycentric system
(as it is for triangle, triangular faces and tetrahedra), and
therefore, we only give the degree 3. The relation from one
system to the other is as follows (here for the degree 3):

00 10 20 30
300 210 120 030

Since complete elements and reduced elements have the
same boundary edges, the relations hold for both cases.

In the tables, we consider the case of bidimensional
edges but, obviously, this apply to three dimensions after
an adequate labelling of the entities.

@ Springer

Table 9 Complete or reduced Lagrange triangle of degree 3

d Edge nodes in terms of the control points

_ 8Py +12Py1g+6P 130+ Pos
3 Appo = 3P 2157 1201+Po3o

Ao = P300+6P210-;172P|zo+8l’030

Table 10 Complete or reduced Lagrange triangle of degree 3

d Edge control points in terms of the nodes

 —5A300+184510—94 50+ 2403
3 Paip = 300 mg 12024030

Py = 2A3no*9A21¢H;18A120*5A030

Determinants in a control coefficient

We explain how to find the determinants involved in one
control coefficient by considering the case of a quad of
degree d, Relation (27).

At first, it is required to find the appropriate indices i;
and i, such that (¢ =2d — 1)

— (For I=0,q4, i1 =0,d—1

(i +ir =1))),
from which we have the pairs (i1, i,) therefore the pertinent
vectors together with the associated weights (the factors
C-) relative to these indices. Then we do the same for the
indices j; and j, so we find the pairs such that

- (For J=0,q, (for j; =0,d (for j,=0,d—-1
Gi +j2=D)))s
so we have the pairs (ji,J») therefore the pertinent vectors
together with the associated weights (the factors C-) rela-
tive to these indices. Now, we group together these indices
to obtain the pairs (i1,j;) and (i5,/,), the weights and the
number of terms (determinants) in a given coefficient. In
Table 11 and the following schematics, we give details
about the coefficients N;; when J = 0, note that vector,

(for (for i, =0,d

. . . —_
span the edge PyyPgo, in the u-direction, from PyyPjo to
—_— . .
PioPi41 (top to bottom) while vector, are the vectors in

the v-direction from PyyPy; to m (bottom to top). For
J =1, we have to repeat the same task but now we have
two pairs in (ji,/2), one being (0, 1), and the other being
(1, 0), Table 12, increasing the number of determinants in a
given coefficient, etc. Finding all the coefficients clearly
requires writing a computer program.
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Table 11 Example of how to compute some control coefficients

Table 12 Example of how to compute some control coefficients when

when J =0 J=1
1J i i Ji J2 vector; vector; Comment 1J i i J1 J2 vectory vector, Comment
00 0 0 0 0 PooP1o PooPo; corner 01 0 0 0 1 PooPio Py Poa d>1
— — e e
10 0 1 0 0 PyP1o  ProPn coiine_r . 0 0 ! 0 Poi P PooPo;
=
1 0 0 0 — - d>1 11 0 1 0 1 PooP1o Py Ppp d>1
PyoPay PooPor 0 1 1 0 SN —
20 0 2 0 0 I — Py P PPy
PooPio PP 1 0 0 | N N d>1
1 1 0 0 - - PioPy Po1Poy
P1oPy PioP1y - -
1 0 1 0 PPy PooPoi d>1
2 0 0 0 pp. PP, d>2 0070
2030 0001 . .
21 0 2 0 1 PP PP
30 0 3 0 0 e e 00£710 21422
PooP1o P30 P3; 0 2 | 0 P B
1 2 0 0 PioP PP corner o 20821
10P20 2021 SN -
d=2 1 1 0 1 P1oPyo PPy
2 1 0 0 PP PioPry 1 1 1 0 PPy PPyl
3 0 0 0 P3Py PooPor d>3 2 0 0 ! PyP3 PorPoy d>2
= =
40 0 4 0 0 PooPro  PaoPa 2 B ! 0 PyiP3 PooPor d>2
1 3 0 0 PioPy P3P 31 0 3 0 1 PooP1o P3P
s e
2 2 0 0 PPy PPy 0 3 1 0 PoiPyy PyPs
e e —_— —_—
3 ! 0 0 P3Py ProPn 1 2 0 ! P1oPay Py Py
—— —_— — —_
4 0 0 0 PaoPso PooPor d>4 1 2 1 0 P11 Py PPy
e e —_ [N
50 0 5 0 0 PooPio PsoPs; 2 1 0 1 PoP3o PPy
1 4 0 0 P1oPy PyoPyy 2 1 1 0 P21 P3; PioP1y
2 3 0 0 P20P30 PP COI;IG_I’ 5 3 0 0 1 m m d>3
=
3 5 0 0 SN SN 3 0 1 0 P31Py PooPo; d>3
P3oPyo PP
etc.
4 1 P4oPsp PPy
5 0 0 0 PsoPeo PooPor d>5
etc.
degree 1 01 11 01 11 References
1. Arnold DL, Awanou G (2011) The serendipity family of finite
elements. Found Comput Math 11:337-344
2. Babuska I, Guo BQ (1988) The h-p version of the finite element
00 10 00 10 method for domain with curved boundaries. SIAM J Numer Anal
25(4):837-861
03 13 23 33 3. Babuska I, Guo BQ (1996) Approximation properties of the h-p
degree 2 version of the finite element method. Comput Method Appl Mech
g Eng 133:319-346
4. Bernadi C, Maday Y, Rapetti F (2004) Discrétisation variation-
Pij vs Nij 02 12 22 32 nelles de problemes aux limites elliptiques, collection
mathématiques et applications. Springer, Heidelberg
02 12 29 5. Bézier P (1986) Courbes et surfaces, Mathématiques et CAO.
Hermes, Paris
01 1 21 31 6. Borouchaki H, Georg PL (2000) Quality mesh generation, con-
01 11 21 cise review paper. C R Acad Sci Ser 1IB 328:505-518
7. Borouchaki H, George PL (2012) Construction of tetrahedral
meshes of degree two. Int ] Numer Method Eng 90(9):1156-1182
8. Ciarlet PG (1978) The finite element method. North-Holland,
Amsterdam
00 10 20 00 10 20 30 9

. Ciarlet PG (1991) Basic error estimates for elliptic problems. In:

Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol

@ Springer



424

Engineering with Computers (2016) 32:405-424

10.

11.

12.

14.

15.

16.

17.

II, finite element methods (Part 1). North-Holland, Amsterdam,
pp 17-352

Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric anal-
ysis. Toward integration of CAD and FEA. Wiley, Chichester
Dey S, O’Bara RM, Shephard MS (1999) Curvilinear mesh
generation in 3D, In: 8th International meshing roundtable, South
Lake Tahoe

Farin G (2002) Curves and surfaces for CAGD. A practical guide,
5th edn. Academic Press, London

. Floater MS, Gillette A (2015) Nodal bases for the serendipity

family of finite elements. Found Comput Math (to appear)

Frey PJ, George PL (2008) Mesh generation, 2nd edn. Wiley,
Hoboken

George PL, Borouchaki H (2014) Sur les éléments finis de
Lagrange pyramidaux. RR INRIA 8525

George PL, Borouchaki H (2014) Validity of Lagrange (Bézier)
and rational Bézier quads of degree 2. Int J Numer Method Eng
99:611-632

George PL, Borouchaki H (2016) Construction and geometric
validity (positive jacobian) of serendipity Lagrange finite ele-
ments, theory and practical guidance. M2AN (Math Model
Numer Anal) (to appear)

@ Springer

18.

19.

20.

21.

22.

23.

24.

Gordon WJ, Hall CA (1973) Construction of curvilinear co-or-
dinate systems and applications to mesh generation. Int J Numer
Methods Eng 7:461-477

Johnen A, Remacle JF, Geuzaine C (2011) Geometrical validity
of curvilinear finite elements. In: 20th International meshing
roundtable, Paris, pp 255-271

Johnen A, Remacle JF, Geuzaine C (2014) Geometrical validity
of high-order triangular finite elements. Eng Comput 30:375-382
Oden JT (1994) Optimal h-p finite element methods. Comput
Methods Appl Mech Eng 112:303-331

Sahni O, Xuo XJ, Janse KE, Shephard MS (2010) Curved
boundary layer meshing for adaptive viscous flow simulations.
FEAD 46:132-139

Sherwin SJ, Peiro J (2002) Mesh generation in curvilinear
domains using high-order elements. Int J Numer Method Eng
55:207-223

Xuo XJ, Shephard MS, O’Bara RM, Natasia R, Beal MW (2004)
Automatic p-version mesh generation for curved domains. Eng
Comput 20:273-285



	Geometric validity (positive Jacobian) of high-order Lagrange finite elements, theory and practical guidance
	Abstract
	Introduction
	Bernstein polynomials, Bézier curves and Bézier patches
	Bézier form versus finite element form of an element
	Computing and evaluating the jacobian
	The 9-node Lagrange quadrilateral

	Bidimensional complete Lagrange elements
	Order 1 or 3-node triangle
	Order d triangles
	Order 1 or 4-node quadrilateral
	Order d quadrilaterals

	Bidimensional incomplete Lagrange elements
	Order d Serendipity triangles
	Order d Serendipity quadrilaterals

	Tridimensional complete Lagrange elements
	Order 1 or 4-node tetrahedron
	Order 1 or 6-node prism
	Order 1 or 8-node hexahedron
	Order 1 or 5-node pyramid
	Order d tetrahedra
	Order d prisms
	Order d hexahedra
	Order d pyramids

	Tridimensional incomplete Lagrange elements
	Conclusion
	Appendix
	Edge nodes versus control points
	Determinants in a control coefficient

	References




