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Abstract

Finite elements of degree two or more are needed to solve various P.D.E. problems. This
paper discusses a method to validate such meshes for the case of the serendipity Lagrange
elements of various degree. The first section of this paper comes back to Bézier curve and
Bézier patches of arbitrary degree. The way in which a Bézier patch and a complete finite
element are related is recalled. The construction of serendipity or reduced Lagrange finite
elements of various degree is discussed, including simplices (triangle and tetrahedron), quads,
prisms (pentahedron), pyramids and hexes. The validity condition, the positivity of the
jacobian, exhibited for the classical (complete) elements is used to validate their serendipity
counterparts after having invented a complete element equivalent to the reduced element
under analyse.

1 Introduction

High order (p-version) finite elements are employed to accurately solve a number of P.D.E. with
a good rate of convergence, see [2], [3], [9], [10], [27]. The order impacts two different aspects, one
concerning the geometry, the other the finite element approximation. These two aspects may
be combined or not. For instance, a high order element in the case of a straight-sided geometry
does not lead to any difficulty at the time the geometry is considered, while even a not too high
order element where the geometry is a curved geometry may lead to some tedious questions,
see the pioneering references, [29], [28], [30] and [13] and some more recent references, including
[7] for tetrahedral elements, [21] for quadrilaterals and [24] for triangles. In this paper, we are
only concerned with the geometric validity of high order serendipity meshes of planar or volume
domains with curved boundaries but we are not directly interested in the finite element aspect,
e.g. solution methods and mesh quality. As regards the validity of a given mesh, a common
idea is that it is sufficient to locate the nodes on the curved edges without giving any explicit
attention to the positivity of the resulting jacobian. Another idea and one that is advocated in
a number of papers is to evaluate the jacobian on a sample of points (for example Gauss points)
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but this is only a necessary condition. Actually, this works well in most cases but only if the
boundary is not too bended.

The idea is to return to the case of the classical Lagrange elements where we have sufficient
conditions for the geometric validity. To this end, given a serendipity element, it is required to
invent a complete element which is equivalent to the reduced element.

Before going to this question, we first discuss about various methods suitable for the effective
construction of the serendipity or reduced elements, since there is a shortage of literature about
this point (apart for the 8-node quad and the 9-node triangle).

Nomenclature

• K̂ the reference element, K the current element, FK the mapping from K̂ to K, pi, pij , ..., a shape
function, d the degree of the finite element, J the jacobian of K, q the degree of this jacobian,

• Âi, Ai, (Aij , Aijk, Aijkl), a node of K̂ and its image by FK ,

• u, v, w, t or x̂, ŷ, ẑ, the parameters living in the parametric space, e.g. K̂,

• Γ and γ, Σ and σ, Θ and θ, resp. a curve and its expression, a bidimensional patch and its
expression, a tridimensional patch and its expression,

• Pij (Pijk, Pijkl) a control point, Nij (Nijk, Nijkl) a (scalar) control value,

• Bd
i (u) the Bernstein polynomial of degree d for a system of natural coordinates, Bd

ij(u, v), Bd
ijk(u, v, w), ...,

the Bernstein polynomial of degree d for a system of barycentric coordinates, Cd
i , the binomial co-

efficient,

• [.] and |.|, a matrix and a determinant.

For a further usage, the first three sections recall some basics about Bézier patches (Section 2)
and usual (complete) Lagrange finite elements (Sections 3 and 4).

2 Bernstein polynomials, Bézier curves and Bézier patches

Following [5] and [14], a Bézier curve (the edges of the elements) of degree d is defined by means
of d+1 control points and the Bernstein basis. More precisely, let Pi ∈ R2 orR3 be those points,
the curve Γ reads

Γ =

γ(u) =
∑
i=0,d

Bd
i (u)Pi withu ∈ [0, 1]

 , (1)

and, using a system of barycentric coordinates, the same reads

Γ =

γ(u, v) =
∑

i+j=d

Bd
ij(u, v)Pij , withu+ v = 1

 . (2)

In the above equations, the Bernstein polynomials respectively read as

Bd
i (u) = Cd

i u
i(1− u)d−i =

d!

i!(d− i)!
ui(1− u)d−i , (3)

and

Bd
ij(u, v) = Cd

iju
ivj =

d!

i!j!
uivj with i+ j = d . (4)
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and so on.

This abstract reading of γ(u, v) or γ(u) extends to tensor-product patches, for instance in
two dimensions, and for the degree d× d, we have

σ(u, v) =
∑
i=0,d

∑
j=0,d

Bd
i (u)Bd

j (v)Pij , , (5)

and the patch reads as

Σ = {σ(u, v) with (u, v) ∈ [0, 1]× [0, 1]} , (6)

which is an element by itself or a face element in three dimensions. This extends to tridimensional
tensor-product patches (e.g. by defining θ(u, v, w),Θ, ... accordingly). Such definitions will be
used to define quadrilaterals, hexes and quadrilateral faces (in the case of a prism or a pyramid).

As for simplices or triangular faces, it is much more convenient to use the barycentric form
of the Bézier setting, e.g

Σ =

σ(u, v, w) withu+ v + w = 1 ,whereσ(u, v, w) =
∑

i+j+k=d

Bd
ijk(u.v, w)Pijk

 , (7)

for a triangle or a triangular face and

Θ =

θ(u, v, w, t) withu+ v + w + t = 1 and θ(u, v, w, t) =
∑

i+j+k+l=d

Bd
ijkl(u, v, w, t)Pijkl

 ,

(8)
for a tet patch.

3 Bézier form and finite element form of a complete element

This section briefly recalls the basics of what a finite element is and shows that complete1

Lagrange elements can be written in terms of a Bézier form. To do this, we follow [9] and more
precisely [10], using the same notations.

Let K be a geometric element (triangle, quad, tet, ...), a Lagrange finite element associated
with K is defined by the triple [K,P,Nodes] where K is the element, P is a space of polynomials
and Nodes is a set of nodes. Actually, K is constructed as the image of a reference element K̂,
equipped with a set of reference nodes, by means of a mapping FK , e.g., K = FK(K̂) and, in turn,

FK is defined by means of the polynomials in space P and we have FK(Â) =
∑

i=0,n−1
pi(Â)Ai

where pi is a polynomial, n is the number of such polynomials (e.g. the dimension of space P ),
Ai is the node i of K and Â is the value of the parameters (e.g., for instance, (u, v) or (x̂, ŷ))
where FK is evaluated. Therefore, if we consider K as a patch (such as Σ in the previous section)
we have (with evident notations)

K =

M(u, v) with (u, v) ∈ K̂ whereM(u, v) =
∑

i=0,n−1
pi(u, v)Ai

 , (9)

1incomplete element can also be written in this way but it is more subtle.
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in other words, the finite element is defined by means of shape functions and nodes.

Let us consider now a Bézier form like (here is the case of a quadrilateral patch)

σ(u, v) =
∑
i=0,d

∑
j=0,d

Bd
i (u)Bd

j (v)Pij ,

where d is the degree of space P and Pij is a set of control points, i.e., a patch defined by means
of Bernstein polynomials and control points.

As a matter of fact, for a complete element, space P is complete so that it can be expressed
both in terms of the above pi(u, v) and the Bernstein polynomials. In other words, we have
(with appropriate notations)∑

i=0,n−1
pi(u, v)Ai =

∑
i=0,d

∑
j=0,d

Bd
i (u)Bd

j (v)Pij .

As a consequence the Ais can be written in terms of the Pijs and vice versa and the pis are
linear combinations of the Bd

i and vice versa.

To simply illustrate this point, we return to the simple case of a Bézier curve of degree 2. It
reads ∑

i=0,2

B2
i (u)Pi = (1− u)2P0 + 2u(1− u)P1 + u2P2 ,

let us define A0 = P0, A1 = P0+P2+2P1
4 andA2 = P2, then P0 = A0, P1 = −A0−A2+4A1

2 andP2 =
A2 and, replacing the Pis in the above relation, we have

(1−u)2A0 + 2u(1−u)
−A0 −A2 + 4A1

2
+u2A2 = (1−u)(1− 2u)A0 + 4u(1−u)A1 +u(2u− 1)A2 ,

which is the classical Lagrange form of the curve. This mechanism applies whatever the degree
of the curve and also applies for the patches themselves. The main interest is then to replace the
finite elements by their equivalent Bézier setting, making simpler and systematic the calculation
and the analysis of their jacobian polynomials.

4 Computing and evaluating the jacobian of a complete element

First of all, we introduce the control points associated with a given element K (formulae allows
for this in the case K is defined by its nodes). Then, we write the finite element in its Bézier
setting and we express its jacobian. This polynomial being a product of Bernstein polynomials
(derivatives are multiplied one each other) is, itself, a Bézier form. Therefore we have immedi-
ately a sufficient condition of positiveness: the coefficients of the polynomial must be strictly
positive in the case of an interpolant coefficient and non negative if not.

4.1 Complete Lagrange triangle or quad of degree d

The shape functions for Lagrange triangles together with for Lagrange quads can be written
using a generic formulation. Let

φi(u) =
(−1)i

i!(d− i)!
Πl=d

l=0,l 6=i(l − du) ,
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then, the shape function with index ij for a quad of degree d× d simply reads

pij(u, v) = φi(u)φj(v) . (10)

The generic expression for a triangle of degree d involves using the system of barycentric coor-
dinates. Let

φi(u) =
1

i!
Πi−1

l=0(du− l) ,

then, the shape function with index ijk for a triangle of degree d simply reads

pijk(u, v, w) = φi(u)φj(v)φk(w) . (11)

Triangle of degree d. The finite element (as being complete) is written in a Bézier form as

Σ = σ(u, v, w) =
∑

i+j+k=d

Bd
ijk(u, v, w)Pijk , (12)

where the Pijks are the control points. The jacobian polynomial reads

J (u, v, w) =
∑

I+J+K=2(d−1)

Bq
IJK(u, v, w)NIJK ,

where q = 2(d− 1) and the coefficients NIJK are

NIJK = d2
∑

i1+i2=I,j1+j2=J,k1+k2=K

Cd−1
i1j1k1

Cd−1
i2j2k2

Cq
IJK

∣∣∆100
i1+1,j1k1 ∆010

i2+1,j2k2

∣∣ , (13)

with i1 + j1 + k1 = i2 + j2 + k2 = d− 1, Cq
ijk a coefficient (as previously defined) and with the

following ∆:

∆100
ijk =

−−−−−−−−−→
PijkPi−1,j+1,k and ∆010

ijk =
−−−−−−−−−→
PijkPi−1,j,k+1 .

The jacobian is a polynomial of degree q = 2(d − 1), the number of control coefficients is
(q+1)×(q+2)

2 which rapidly increases with q or d as it is for the number of terms (e.g., (d×(d+1)
2 )2)

to be computed (some coefficients reduce to one term while others are the summation of a number
of such terms). The geometry of the observed element is valid if the ”corner” coefficients are
strictly positive while the others are non negative.

Quad of degree d. The finite element (as being complete) is written in a Bézier form as

σ(u, v) =
∑
i=0,d

∑
j=0,d

Bd
i (u)Bd

j (v)Pij , (14)

where the Pijs are the control points. The jacobian polynomial has the form

J (u, v) =
∑
I=0,q

∑
J=0,q

Bq
I (u)Bq

J(v)NIJ ,

where q = 2d− 1 and the coefficient NIJs are

NIJ = d2
∑

i1+i2=I

∑
j1+j2=J

Cd−1
i1

Cd
i2

Cq
I

Cd
j1
Cd−1
j2

Cq
J

|∆1,0
i1,j1

∆0,1
i2,j2
| . (15)
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with ∆1,0
i,j =

−−−−−−→
PijPi+1,j and ∆0,1

i,j =
−−−−−−→
PijPi,j+1 ,

and with i1 = 0, d − 1, i2 = 0, d, j1 = 0, d, j2 = 0, d − 1 and Cq
ij the binomial coefficients. The

jacobian is a polynomial of degree q× q = (2d− 1)× (2d− 1), the number of control coefficients
is (q + 1)2 which rapidly increases with q or d and the number of terms (e.g. determinants) to
be computed (some coefficients reduce to one term while others are the summation of a number
of such8 terms) is d2(d + 1)2. The geometry of the observed element is valid if the ”corner”
coefficients are strictly positive while the others are non negative.

5 Bidimensional incomplete Lagrange elements

Incomplete or reduced elements have a reduced number of nodes (typically the edge nodes are
those of the complete elements while the number of internal nodes is zero or smaller than that
in the complete element). Low degree elements are well documented in the literature, at least
for quad geometries (8-node quad of degree 2) and for the 9-node triangle of degree 3. The
polynomial space is also of a smaller dimension as compared with the complete space.

There are different methods to define reduced elements among which we have the serendipity
elements where space P is rich enough to achieve a good level of precision. One method specifies
space P and, given an adequate number of nodes, constructs the shape functions by solving an
adequate system satisfying the desired properties (basicaly using the Kronecker delta). Another
method makes use of Taylor expansions in order to eliminate the internal nodes. Whatever the
method, the shape functions have a generic expression (such as (10) and (11) for the complete
Lagrange elements). Let us consider the case of a tensor-product complete element and let pcij
be its shape functions, then, for the reduced element, we have

pij(u, v) = pcij(u, v) +
∑
kl

αkl
ijp

c
kl(u, v) , (16)

where indices ij correspond to the edge2 nodes and indices kl are those related to the internal3

nodes of the complete element and αkl
ij is a coefficient (of repartition, how pckl contributes to pij).

For reduced simplices, we have a similar generic expression

pijk(u, v, w) = pcijk(u, v, w) +
∑
lmn

αlmn
ijk p

c
lmn(u, v, w) . (17)

In the rest of the paper, we give a detailed discussion about various methods of construction
and, this being done and given a reduced element in a mesh, we discuss the conditions that give
guarantees about its geometric validity. As will be seen, the main idea is, given such an element
in a mesh, to return to a complete element equivalent to this reduced one and then to apply
what we did previously for complete elements. It turns out that this requires to properly invent
the ”missing” nodes and, more precisely, the ”missing” control points.

5.1 Order d serendipity (or reduced) triangles

To have at least one internal node, we need to have d = 3, so we meet the complete triangle of
degree 3, the well-known 10-node triangle, where we have only one internal node.

2actually, for some reduced elements, one or several internal nodes of the complete element are retained as
nodes for the reduced element.

3cf. infra.
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The 9-node triangle of degree 3. The numbering of the nodes of the 10-node (9-node)
triangles is as follow:

003 003

102 012 ==> 102 012

201 111 021 201 021

300 210 120 030 300 210 120 030

A Taylor expansion, based on the fact that the reduced polynomial space must contain space
P d−1 = P 2 (in terms of the variables x and y, the span of P 2 is made up of 1, x, y, xy, x2 and
y2), is used to express the edge values of a generic function (let q be this function) in terms of
the internal value of this function. This leads, cf. [4], to a relation4 like

12q(Â111) + 2
∑
ijk∈V

q(Âijk)− 3
∑
ijk∈E

q(Âijk) = 0 , (18)

where Â111 is the point, in the reference element (K̂), of coordinates (13 ,
1
3 ,

1
3), V stands for the

set of vertices in K̂ and E stands for the set of edge nodes in K̂.

?

? ?

Proof: We consider the template depicted in the above diagram (left side) and we use a Taylor
expansion to write the value of a function q in Â300, ..., Â201, the 9 points in the boundary of
the template in terms of its value and its derivatives D1.(.), D2.(., .) evaluated at Â111. Since
the expansion terminates at order 2, for a vertex, here A300, we have

q(Â300) = q(Â111) +D1.(
−−→
U300) +D2.(

−−→
U300,

−−→
U300) ,

where
−−→
U300 =

−−−−−−→
Â111Â300, the derivatives are evaluated at Â111 and the symbol D2. includes (for

short) the coefficient, here 1
2 . The same holds for the other vertices in V, so we have∑

ijk∈V
q(Âijk) = 3q(Â111) +

∑
ij∈V

D1.(
−−→
Uijk) +

∑
ijk∈V

D2.(
−−→
Uijk,

−−→
Uijk) . (19)

A similar relation holds for the six nodes in E and we have∑
ijk∈E

q(Âijk) = 6q(Â111) +
∑
ijk∈E

D1.(
−−→
Vijk) +

∑
ijk∈E

D2.(
−−→
Vijk,

−−→
Vijk) . (20)

where
−−→
Vijk =

−−−−−−→
Â111Âijk with ijk ∈ E .

The derivativeD1 is a linear operator, so
∑

ijk∈V D
1.(
−−→
Uijk) = D1.(

∑
ijk∈V

−−→
Uijk) = 0, similarly

we have
∑

ijk∈E D
1.(
−−→
Vijk) = 0. Now,

−−→
Vijk can be written in terms of the

−−→
Uijk. Indeed, let us

consider Â210, we have Â210 = 2Â300+Â030
3 so

−−→
V210 =

−−−→
2U300+

−−→
U030

3 holds. Since, again for index210,
we have

D2.(
−−→
V210,

−−→
V210) = D2.(

−−−→
2U300 +

−−→
U030

3
,

−−−→
2U300 +

−−→
U030

3
)

4the so-called serendipity relation.
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=
4

9
D2.(
−−→
U300,

−−→
U300) +

4

9
D2.(
−−→
U300,

−−→
U030) +

1

9
D2.(
−−→
U030,

−−→
U030) ,

and, by symmetry

D2.(
−−→
V120,

−−→
V120) =

1

9
D2.(
−−→
U300,

−−→
U300) +

4

9
D2.(
−−→
U300,

−−→
U030) +

4

9
D2.(
−−→
U030,

−−→
U030) ,

and similar expressions for the other edge nodes, we have∑
ijk∈E

D2.(
−−→
Vijk,

−−→
Vijk) =

10

9
D2.(
−−→
U300,

−−→
U300) +

10

9
D2.(
−−→
U030,

−−→
U030) +

10

9
D2.(
−−→
U003,

−−→
U003)

+
8

9
D2.(
−−→
U300,

−−→
U030) +

8

9
D2.(
−−→
U300,

−−→
U003) +

8

9
D2.(
−−→
U030,

−−→
U003) , (21)

in other words, the sum for ijk in E is replaced by sums for ijk in V. Now, because
∑

ijk∈V
−−→
Uijk =

0, we have

D2.(
∑
ijk∈V

−−→
Uijk,

∑
ijk∈V

−−→
Uijk) = 0 ,

from which we have

D2.(
−−→
U300,

−−→
U030) +D2.(

−−→
U300,

−−→
U003) +D2.(

−−→
U030,

−−→
U003)

= −1

2

{
D2.(
−−→
U300,

−−→
U300) +D2.(

−−→
U030,

−−→
U030) +D2.(

−−→
U003,

−−→
U003)

}
,

and Relation (21) becomes∑
ijk∈E

D2.(
−−→
Vijk,

−−→
Vijk) =

2

3

{
D2.(
−−→
U300,

−−→
U300) +D2.(

−−→
U030,

−−→
U030) +D2.(

−−→
U003,

−−→
U003)

}
,

then, identifying this sum in Relations (19) and (20) proves Relation (18) and completes the
proof. 2

?

? ?

Since the pijk(u, v, w)s enjoy the same properties, for all the indices ijk, we have

12pijk(Â111) + 2
∑

lmn∈V
pijk(Âlmn)− 3

∑
lmn∈E

pijk(Âlmn) = 0 .

Now, we use Relation (17) to replace the pijks by their counterpart in terms of the complete
shape functions. For symmetry reasons, this relation reduces to

pijk(u, v, w) = pcijk(u, v, w) + αpc111(u, v, w) for ijk ∈ V ,

and pijk(u, v, w) = pcijk(u, v, w) + β pc111(u, v, w) for ijk ∈ E ,

in other words, there is only two coefficients. Let us fix ijk = 300, then, we have

12p300(Â111) + 2
∑

lmn∈V
p300(Âlmn)− 3

∑
lmn∈E

p300(Âlmn) = 0 ,
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and this resumes to α = −1
6 , and the same (fix ijk = 210) implies that β = 1

4 . With these
values, we have the reduced shape functions fully defined via (17), see hereafter.

Then the reduced element, seen as a patch reads

M(u, v, w) =
∑
ijk

pijk(u, v, w)Aijk ,

where ijk lives in V and E , i.e., 9 indices. We replace again the pijks by means of the pcijks,
then we have

M(u, v, w) =
∑
ijk

( pcijk(u, v, w) + αijkp
c
111(u, v, w) )Aijk ,

with αijk = α or β, then this reads also

M(u, v, w) =
∑
ijk

pcijk(u, v, w)Aijk +
∑
ijk

αijkAijkp
c
111(u, v, w) ,

therefore let
A111 =

∑
ijk

αijkAijk ,

so that
M(u, v, w) =

∑
ijk

pcijk(u, v, w)Aijk ,

with now 10 indices. In other words, we have invented the node A111 with which we can define
a complete element fully equivalent to the reduced element. As already seen, a complete element
is equivalent to the Bézier patch ∑

i+j+k=3

B3
ijk(u, v, w)Pijk ,

from which we obtain P111 and it turns out that P111 simply read as

P111 =
∑
ijk

αijkPijk ,

e.g., the same expression as A111. To prove this, we write A111 in two ways, first A111 =∑
ijk αijkAijk and, second, A111 =

∑
i+j+k=3B

3
ijk(u, v, w)Pijk with (u, v, w) = (13 ,

1
3 ,

1
3), then we

have the expression of P111 in terms of the Pijk and A111. To complete the proof, in A111 we
replace the Aijks by means of the Pijks.

In practice. The 9-node triangle is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge A300A030,

P210 =
−5A300 + 18A210 − 9A120 + 2A030

6
and P120 =

2A300 − 9A210 + 18A120 − 5A030

6
.

Then we compute P111 using the above formula. Then, just use Relation (13) to have the control
coefficients of the jacobian.
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The polynomial space of the reduced element. By construction, this space contains
space P 2. Now, because the monomial x2y is in the complete space, it is easy, by means of
instantiations, to see that

x2y =
4

27
pc021 +

2

27
pc012 +

1

27
pc111 ,

then, following Relation (17), we have

x2y =
4

27
p021 +

2

27
p012 +

1

27
pc111 −

1

4

4

27
pc111 −

1

4

2

27
pc111 =

4

27
p021 +

2

27
p012 −

1

54
pc111 ,

and the monomial x2y is not in the reduced polynomial space because pc111 still contributes, so
it is for xy2. We repeat the same for x3. A simple calculation shows that:

x3 =
1

27
p210 +

8

27
p120 + p030 +

1

27
p012 +

8

27
p021 +

1

27
pc111 ,

and the monomial x3 is not in the reduced polynomial space, so it is for y3. But the combinations
x3+2x2y, x2y−xy2 and y3+2xy2 are combinations of the reduced functions (indeed, 1

27+2−154 = 0
and 1

27 −
1
27 = 0). As a conclusion, the diagram of the polynomial space is

1

x y

x2 xy y2

x3 + x2y x2y − xy2 y3 + xy2

As compared with the polynomial space of the complete element, we miss x3, y3, x2y and xy2

but we have the above linear combinations of these monomials.

The shape functions. With the value of α and β and using Relation (17), it is easy to
obtain the explicit expression of the shape functions. Indeed, only two of them must be made
explicit since, for symmetry reasons, the other functions are evident to obtain. Therefore, we
use Relation (11) to express pc300(u, v), pc210(u, v) and pc111(u, v) and then compute p300(u, v) and
p210(u, v), the two type functions, we find

p300(u, v, w) =
1

2
u(2u2 + 2v2 + 2w2 − 5uv − 5uw − 5vw) ,

or p300(x, y) =
9

2
(1− x− y)(

2

9
− x− y + xy + x2 + y2) ,

and p210(u, v) =
9

4
uv(4u− 2v + w) or p210(x, y) =

9

4
x(1− x− y)(4− 6x− 3y) .

The two type functions are:

1 p300(x, y) = 9
2(1− x− y)(29 − x− y + xy + x2 + y2)

4 p210(x, y) = 9
4x(1− x− y)(4− 6x− 3y)

Type shape functions of the reduced 9-node triangle of degree 3

By symmetry (x→ 1− x, (u, v)→ (v, u), etc., in x or u), the full list is the following:
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1 p300(x, y) = 9
2(1− x− y)(29 − x− y + xy + x2 + y2)

2 p030(x, y) = 9
2x(29 − x− y + xy + x2 + y2)

3 p003(x, y) = 9
2y(29 − x− y + xy + x2 + y2)

4 p210(x, y) = 9
4x(1− x− y)(4− 6x− 3y)

5 p120(x, y) = 9
4x(1− x− y)(−2 + 6x+ 3y)

6 p021(x, y) = 9
4xy(1 + 3x− 3y)

7 p012(x, y) = 9
4xy(1− 3x+ 3y)

8 p102(x, y) = 9
4y(1− x− y)(−2 + 3x+ 6y)

9 p201(x, y) = 9
4y(1− x− y)(4− 3x− 6y)

Shape functions of the reduced 9-node triangle of degree 3

This concludes the case of the 9-node triangle.

The 12-node triangle of degree 4. To give another example of an higher order reduced
triangle, we consider the case d = 4. The complete Lagrange triangle has 15 nodes including 3
internal nodes and the numbering of the nodes is as follow:

004 004

103 013 103 013

202 112 022 ==> 202 022

301 211 121 031 301 031

400 310 220 130 040 400 310 220 130 040

The reduced element, if any, has only 12 nodes. Constructing this element involves using 3
Taylor expansions centered at the 3 internal nodes and looking in the reduced space P for space
P d−1 = P 3. From this results two serendipity relations (q being a generic function)

15q(Â211)− 15q(Â121) = −2q(Â400) + 2q(Â040)

−5q(Â130)− 2q(Â103) + 5q(Â310) + 3q(Â202) + 3q(Â301) + 2q(Â013)− 3q(Â031)− 3q(Â022) ,

and
15q(Â211)− 15q(Â112) = −2q(Â400) + 2q(Â004)

−2q(Â130)−5q(Â103) + 3q(Â310) + 3q(Â220) + 5q(Â301) + 2q(Â031)−3q(Â022)−3q(Â013) . (22)

?

? ?

Proof: We return to that we did for the previous element but, in this case, we consider the three
following sub-templates:

. . 004

103 . . 013 103 013

202 112 . . 112 022 202 112 022

301 211 121 . . 211 121 031 301 211 121 031

400 310 220 130 . . 310 220 130 040 . . . . .

11



and we note V211 and E211. etc., the set of vertices and the set of edge nodes relative to the
sub-template centered at Â211, etc. We consider the sub-template depicted in the above diagram
(left side) and we use a Taylor expansion to write the value of a function q in Â400, ..., Â301, the 9
points in the boundary of the sub-template in terms of its value and its derivatives D1.(.), D2.(., .)
evaluated at Â211. Since the expansion terminates at order 3, for a vertex, here A400, we have

q(Â400) = q(Â211) +D1.(
−−→
U400) +D2.(

−−→
U400,

−−→
U400) +D3(

−−→
U400,

−−→
U400,

−−→
U400) ,

where
−−→
U400 =

−−−−−−→
Â111Â400, the derivatives are evaluated at Â211 and the symbols D2. and D3.

include (for short) the coefficients, here 1
2 and 1

6 The same holds for the other vertices in V211,
so, after summation, we have∑

ijk∈V211

q(Âijk) = 3q(Â211)+
∑

ij∈V211

D1.(
−−→
Uijk)+

∑
ijk∈V211

D2.(
−−→
Uijk,

−−→
Uijk)+

∑
ijk∈V211

D3.(
−−→
Uijk,

−−→
Uijk,

−−→
Uijk) .

(23)
A similar relation holds for the nodes in E211 and we have∑

ijk∈E211

q(Âijk) = 6q(Â211) +
∑

ij∈E211

D1.(
−−→
Vijk) +

∑
ijk∈E211

D2.(
−−→
Vijk,

−−→
Vijk) +

∑
ijk∈E211

D3.(
−−→
Vijk,

−−→
Vijk,

−−→
Vijk) .

(24)

where
−−→
Vijk =

−−−−−−→
Â211Âijk with ijk ∈ E211.

The derivative D1 is a linear operator, so
∑

ijk∈V211 D
1.(
−−→
Uijk) = D1.(

∑
ijk∈V211

−−→
Uijk) = 0,

similarly we have
∑

ijk∈E D
1.(
−−→
Vijk) = 0.

On the other hand,
∑

ijk∈V211 D
3.(
−−→
Uijk,

−−→
Uijk,

−−→
Uijk) 6= 0 while

∑
ijk∈E211 D

3.(
−−→
Vijk,

−−→
Vijk,

−−→
Vijk) =

0 and the two above relations simplify.

Now,
−−→
Vijk can be written in terms of the

−−→
Uijk. Indeed, let us consider Â310, we have Â310 =

2Â400+Â130
3 so

−−→
V310 =

−−−→
2U400+

−−→
U130

3 holds. Since, again for index310, we have

D2.(
−−→
V310,

−−→
V310) = D2.(

−−−→
2U400 +

−−→
U130

3
,

−−−→
2U400 +

−−→
U130

3
)

=
4

9
D2.(
−−→
U400,

−−→
U400) +

4

9
D2.(
−−→
U400,

−−→
U130) +

1

9
D2.(
−−→
U130,

−−→
U130) ,

and, by symmetry

D2.(
−−→
V220,

−−→
V220) =

1

9
D2.(
−−→
U400,

−−→
U400) +

4

9
D2.(
−−→
U400,

−−→
U130) +

4

9
D2.(
−−→
U130,

−−→
U130) ,

and similar expressions for the other egde nodes, we have∑
ijk∈E211

D2.(
−−→
Vijk,

−−→
Vijk) =

10

9
D2.(
−−→
U400,

−−→
U400) +

10

9
D2.(
−−→
U130,

−−→
U130) +

10

9
D2.(
−−→
U103,

−−→
U103)

+
8

9
D2.(
−−→
U400,

−−→
U130) +

8

9
D2.(
−−→
U400,

−−→
U103) +

8

9
D2.(
−−→
U130,

−−→
U103) , (25)

in other words, the sum for ijk in E211 is replaced by sums for ijk in V211. Now, because∑
ijk∈V211

−−→
Uijk = 0, we have

D2.(
∑

ijk∈V211

−−→
Uijk,

∑
ijk∈V211

−−→
Uijk) = 0 ,

12



from which we have

D2.(
−−→
U400,

−−→
U130) +D2.(

−−→
U400,

−−→
U103) +D2.(

−−→
U130,

−−→
U103)

= −1

2

{
D2.(
−−→
U400,

−−→
U400) +D2.(

−−→
U130,

−−→
U130) +D2.(

−−→
U103,

−−→
U103)

}
,

and Relation (25) becomes∑
ijk∈E211

D2.(
−−→
Vijk,

−−→
Vijk) =

2

3

∑
ijk∈V211

D2.(
−−→
Uijk,

−−→
Uijk), ,

and, now, Relations (19) and (20) respectively reduce to∑
ijk∈V211

q(Âijk) = 3q(Â211) +
∑

ijk∈V211

D2.(
−−→
Uijk,

−−→
Uijk) +

∑
ijk∈V211

D3.(
−−→
Uijk,

−−→
Uijk,

−−→
Uijk) ,

and∑
ijk∈E211

q(Âijk) = 6q(Â211) +
∑

ijk∈E211

D2.(
−−→
Vijk,

−−→
Vijk) = 6q(Â211) +

2

3

∑
ijk∈V211

D2.(
−−→
Uijk,

−−→
Uijk) .

A linear combination of these two lines leads to

2
∑

ijk∈V211

q(Âijk) − 3
∑

ijk∈E211

q(Âijk) = −12 q(Â211) + 2
∑

ijk∈V211

D3.(
−−→
Uijk,

−−→
Uijk,

−−→
Uijk) ,

which is written as

2
∑

ijk∈V211

D3.(
−−→
Uijk,

−−→
Uijk,

−−→
Uijk) = 12 q(Â211) + 2

∑
ijk∈V211

q(Âijk) − 3
∑

ijk∈E211

q(Âijk) .

The 2D3.(., ., .) is a constant denoted as C211, so we have

C211 = 12 q(Â211) + 2
∑

ijk∈V211

q(Âijk) − 3
∑

ijk∈E211

q(Âijk) , (26)

and the same applies to the two other sub-templates, so we also have

C121 = 12 q(Â211) + 2
∑

ijk∈V121

q(Âijk) − 3
∑

ijk∈E121

q(Âijk) ,

C112 = 12 q(Â112) + 2
∑

ijk∈V112

q(Âijk) − 3
∑

ijk∈E112

q(Âijk) .

We write C211 = C121 = C112 and the Relations (22) hold, therefore completing the proof. 2

?

? ?

Since the pijk(u, v, w)s enjoy the same properties, for all the indices ijk, Relations (22) also hold
for these functions. Now, we use Relation (17) to replace the pijks by their counterpart in terms
of the complete shape functions. For short, we write this relation as

pijk(u, v, w) = pcijk(u, v, w) + αijkp
c
211(u, v, w) + βijkp

c
121(u, v, w) + γijkp

c
112(u, v, w) .
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Due to the symmetries, only three indices must be examined, 400, 310 and 220. For index 400,
Relations (22) simply reduce to

15α400 − 15β400 = −2 and 15α400 − 15γ400 = −2 ,

therefore, we have only one parameter, say α1, and we have

α400 = α1, β400 = α1 +
2

15
and γ400 = β400 = α1 +

2

15
.

For index 310, we have

15α310 − 15β310 = 5 or 3α310 − 3β310 = 1 and 15α310 − 15γ310 = 3 or 5α310 − 5γ310 = 1 ,

therefore with one parameter, say α2, and we have

α310 = α2, β310 = α2 −
1

3
and γ310 = α2 −

1

5
.

For index 220, we have

15α220 − 15β220 = 0 and 15α220 − 15γ220 = 3 or 5α220 − 5γ220 = 1 ,

therefore with one parameter, say α3, and we have

α220 = α3, β220 = α3 and γ220 = α3 −
1

5
.

Again by symmetries, we have all the coefficients in terms of the three introduced parameters,
see the following table:

i ijk αijk βijk γijk

1 400 α1 α1 + 2/15 α1 + 2/15
2 040 α1 + 2/15 α1 α1 + 2/15
3 004 α1 + 2/15 α1 + 2/15 α1

4 310 α2 α2 − 1/3 α2 − 1/5
7 031 α2 − 1/5 α2 α2 − 1/3
10 103 α2 − 1/3 α2 − 1/5 α2

6 130 α2 − 1/3 α2 α2 − 1/5
9 013 α2 − 1/5 α2 − 1/3 α2

12 301 α2 α2 − 1/5 α2 − 1/3

5 220 α3 α3 α3 − 1/5
8 022 α3 − 1/5 α3 α3

11 202 α3 α3 − 1/5 α3

Coefficients for the repartition in terms of the three parameters.

Since
∑

ijk αijk =
∑

ijk βijk =
∑

ijk γijk = 1, we find the relation

3α1 + 6α2 + 3α3 = 2 . (27)

As a consequence and a priori , we have as solution a family of triangles defined by two pa-
rameters. To make precise a choice, the method is to find some additional relations between

14



the two parameters by imposing some additional monomials (or linear combinations of mono-
mials) in the polynomial space of the reduced element. By construction, we have the space P 3

included in the reduced polynomial space. As an exercice, we check that x is effectively present.
By instantiations, we know that x is in the complete space and (we evidently write the shape
functions in terms of (x, y) and not in terms of (u, v, w)) reads

x =
1

4
pc310(x, y) +

2

4
pc220(x, y) +

3

4
pc130(x, y) + pc040(x, y) +

3

4
pc031(x, y) +

2

4
pc022(x, y) +

1

4
pc013(x, y)

+
1

4
pc211(x, y) +

2

4
pc121(x, y) +

1

4
pc112(x, y) ,

but we have, here for index 310,

p310(x, y) = pc310(x, y) + α310p
c
211(x, y) + β310p

c
121(x, y) + γ310p

c
2112(x, y)

then, conversely, we have

pc310(x, y) = p310(x, y)− α310p
c
211(x, y)− β310pc121(x, y)− γ310pc2112(x, y) ,

together with similar expressions for all the functions involves in x. Now, we replace the complete
functions by means of these expressions and, looking only for the terms in pc211, we have

x =
1

4
(p310(x, y)−α310p

c
211(x, y)) +

2

4
(p220(x, y)−α220p

c
211(x, y)) +

3

4
(p130(x, y)−α130p

c
211(x, y))

+(p040(x, y)− α040p
c
211(x, y)) +

3

4
(p031(x, y)− α031p

c
211(x, y)) +

2

4
(p022(x, y)− α022p

c
211(x, y))

+
1

4
(p013(x, y)− α013p

c
211(x, y)) +

1

4
pc211(x, y) + ... ,

so we have

x =
1

4
p310(x, y) +

2

4
p220(x, y) +

3

4
p130(x, y) + p040(x, y) +

3

4
p031(x, y) +

2

4
p022(x, y) +

1

4
p013(x, y)

+

{
−1

4
α310 −

2

4
α220 −

3

4
α130 − α040 −

3

4
α031 −

2

4
α022 −

1

4
α013 +

1

4

}
pc211(x, y) + ... ,

and we write the αijks in terms of the above three parameters, then, the coefficient in pc211(x, y)
reduces to

−α1 − 2α2 − α3 +
2

3
,

thus, via the Relation (27), the contribution of pc211(x, y) is null, so it is for the two other
”central” functions, therefore, with no surprise, x is in the reduced polynomial space.

Before going further, we consider the monomial x2. From x and more precisely from 4x, e.g.,
from the relation

4x = pc310(x, y) + 2pc220(x, y) + 3pc130(x, y) + 4pc040(x, y) + 3pc031(x, y) + 2pc022(x, y) + pc013(x, y)

+pc211(x, y) + 2pc121(x, y) + pc112(x, y) ,

we mechanically obtain

16x2 = pc310(x, y) + 4pc220(x, y) + 9pc130(x, y) + 16pc040(x, y) + 9pc031(x, y) + 4pc022(x, y)
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+pc013(x, y) + pc211(x, y) + 4pc121(x, y) + pc112(x, y) ,

then, as above, we replace the pcijks by the corresponding pijks and the adequate repartition of
the ”central” functions. Then, as regard to pc211(x, y), we find the relation

16x2 = (p310(x, y)−α310p
c
211(x, y))+4(p220(x, y)−α220p

c
211(x, y))+9(p130(x, y)−α130p

c
211(x, y))

+(p040(x, y)− α040p
c
211(x, y)) + 9(p031(x, y)− α031p

c
211(x, y)) + 4(p022(x, y)− α022p

c
211(x, y))

(p013(x, y)− α013p
c
211(x, y)) + pc211(x, y) + ... ,

and it yields the coefficient (omitting the factor 16)

−(α310 + 4α220 + 9α130 + 16α040 + 9α031 + 4α022 + α013) + 1 ,

where we write the αijks in terms of α1, α2 and α3, then we have the relation

0 = −(α2 + 4α3 + 9(α2 − 1/3) + 16(α1 + 2/15) + 9(α2 − 1/5) + 4(α3 − 1/5) + (α2 − 1/5) ) + 1

from which we obtain the relation

−16α1 − 20α2 − 8α3 = −14/3 ,

which gives the equation
8α1 + 10α2 + 4α3 = 7/3 . (28)

Now, we turn to xy. Since:
16xy = 3pc031(x, y) + 4pc022(x, y)

+3pc013(x, y) + pc211(x, y) + 2pc121(x, y) + 2pc112(x, y) ,

as regard to pc211(x, y), we find

16xy = 3(p031(x, y)− α031p
c
211(x, y)) + 4(p022(x, y)− α022p

c
211(x, y))

+3(p013(x, y)− α013p
c
211(x, y)) + pc211(x, y) + ... ,

and we have the coefficient

−3α031 − 4α022 − 3α013 + 1 = −3(α2 − 1/5)− 4(α3 − 1/5)− 3(α2 − 1/5) + 1 ,

which gives the equation
6α2 + 4α3 = 3 . (29)

Now we group together the 3 equations (27), (28) and (29) and the resulting system has no
solution.

As a conclusion, there is no way to find a reduced element covering P 3. The sole chance to
find a solution is to reduce our quest by imposing only the P 2 space. To this end we return to
the three relations

C211 = 12 q(Â211) + 2
∑

ijk∈V211

q(Âijk) − 3
∑

ijk∈E211

q(Âijk) ,

C121 = 12 q(Â211) + 2
∑

ijk∈V121

q(Âijk) − 3
∑

ijk∈E121

q(Âijk) ,
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C112 = 12 q(Â112) + 2
∑

ijk∈V112

q(Âijk) − 3
∑

ijk∈E112

q(Âijk) ,

with the (restricted) constraints C211 = 0, C121 = 0 and C112 = 0. This results to the following
system:

12q(Â211)− 3q(Â121)− 3q(Â112) = −2q(Â400)− 2q(Â130)− 2q(Â103)

+3q(Â310) + 3q(Â220) + 3q(Â202) + 3q(Â301) ,

−3q(Â211) + 12q(Â121)− 3q(Â112) = −2q(Â310)− 2q(Â040)− 2q(Â013)

+3q(Â220) + 3q(Â130) + 3q(Â031) + 3q(Â022) ,

−3q(Â211)− 3q(Â121) + 12q(Â112) = −2q(Â301)− 2q(Â031)− 2q(Â004)

+3q(Â022) + 3q(Â013) + 3q(Â103) + 3q(Â202) .

Now, we replace the generic function q by the pijks and we use Relation (17) to replace these
pijks by their counterpart in terms of the complete shape functions. We write

pijk(u, v, w) = pcijk(u, v, w) + αijk p
c
211(u, v, w) + βijk p

c
121(u, v, w) + γijk p

c
112(u, v, w) ,

and we consider the three type functions, e.g. for ijk = 400, ijk = 310 and ijk = 220. The
previous system gives the corresponding coefficients and, by symmetries, all the coefficients are
obtained as reported in the following table

i ijk αijk βijk γijk

1 400 −1/5 −1/15 −1/15
2 040 −1/15 −1/5 −1/15
3 004 −1/15 −1/15 −1/5

4 310 7/30 −1/10 1/30
7 031 1/30 7/30 −1/10
10 103 −1/10 1/30 7/30

6 130 −1/10 7/30 1/30
9 013 1/30 −1/10 7/30
12 301 7/30 1/30 −1/10

5 220 2/5 2/5 1/5
8 022 1/5 2/5 2/5
11 202 2/5 1/5 2/5

Coefficients for the repartition of the 12-node triangle.

and the following diagram displays the coefficients for the repartition corresponding to Â211.

-1/15

-1/10 1/30

2/5 1/5

7/30 [211] 1/30

-1/5 7/30 2/5 -1/10 -1/15

17



From this, see herefater, we can compute the reduced shape functions.

Then, with the reduced shape functions, the reduced element, seen as a patch, reads

M(u, v, w) =
∑
ijk

pijk(u, v, w)Aijk ,

where the ijks consist in 12 indices. We replace again the pijks by means of the pcijks, then we
have

M(u, v, w) =
∑
ijk

( pcijk(u, v, w) + αijkp
c
211(u, v, w) + βijkp

c
121(u, v, w) + γijkp

c
112(u, v, w) )Aijk ,

with the coefficients of the above table, then this reads also

M(u, v, w) =
∑
ijk

pcijk(u, v, w)Aijk +
∑
ijk

αijkAijkp
c
211(u, v, w)

+
∑
ijk

βijkAijkp
c
121(u, v, w) +

∑
ijk

γijkAijkp
c
112(u, v, w) ,

therefore let
A211 =

∑
ijk

αijkAijk ,

with 12 indices, and similar expressions for A121 and A112, so that

M(u, v, w) =
∑
ijk

pcijk(u, v, w)Aijk ,

with now 15 indices. In other words, we have invented the nodes A211, A121 and A112 with
which we can define a complete element fully equivalent to the reduced element. As already
seen, a complete element is equivalent to the Bézier patch∑

i+j+k=4

B4
ijk(u, v, w)Pijk ,

from which we obtain P211, P121 and P112. One can intuitively think that P211, ... simply reads
as

P211 =
∑
ijk

αijkPijk , ... ,

e.g., the same expression as A211, ..., but, see [19], it is wrong.

In practice. The 12-node triangle analyse, given its nodes, leads to finding its edge control
points by the formulae, here for edge A400A040,

P310 =
−13A400 + 48A310 − 36A220 + 16A130 − 3A040

12
,

P220 =
13A400 − 64A310 + 120A220 − 64A130 + 13A040

18
,

P130 =
−3A400 + 16A310 − 36A220 + 48A130 − 13A040

12
.

Then we compute P211, P121 and P112 by solving the 3× 3 corresponding system. Then, just use
Relation (13) to have the control coefficients of the jacobian.
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The polynomial space of the reduced element. As seen during the construction of the
solution, the polynomial space contains P 2 and various instantiations show that some other
linear combinations of monomials are covered as depicted in the following diagram

1

x y

x2 xy y2

x3 + 2x2y x3 + 2xy2 y3 + 2x2y y3 + 2xy2

and, therefore, x3 − y3 together with x2y − xy2 are also covered.

The shape functions. As previously seen, it is only required to write the three type func-
tions, p400, p310 and p220 to have all of them by symmetries. To this end we need to explicit
pc400, p

c
310, p

c
220 together with pc211, p

c
121, p

c
112, the ”central” functions. After Relation (11), we

have

pc400(u, v, w) =
1

6
u(4u− 1)(4u− 2)(4u− 3) ,

pc310(u, v, w) =
8

3
u(4u− 1)(4u− 2)v ,

pc220(u, v, w) = 4u(4u− 1)v(4v − 1) ,

pc211(u, v, w) = 32uvw(4u− 1) , pc121(u, v, w) = 32uvw(4v− 1) and pc112(u, v, w) = 32uvw(4w− 1) .

Then, for index 400, we have

p400(u, v, w) =
1

6
u(4u− 1)(4u− 2)(4u− 3)− 32

15
uvw(3(4u− 1) + (4v − 1) + (4w − 1)) ,

then, using Maple, we have

(32/3)u4 − 16u3 + (22/3)u2 − u− (128/5)u2vw + (32/3)uvw − (128/15)uv2w − (128/15)uvw2 ,

and, in terms of x and y, this reads

1

15
(1− x− y)(15− 110x− 110y + 240x2 + 256xy + 240y2 − 160x3 + 224x2y + 224xy2 − 160y3) .

For index 310, we obtain

p310(u, v, w) =
8

3
u(4u− 1)(4u− 2)v +

32

30
uvw(7(4u− 1)− 3(4v − 1) + (4w − 1)) ,

then, using Maple, we have

(128/3)u3v − 32u2v + (16/3)uv + (448/15)u2vw − (16/3)uvw − (64/5)uv2w + (64/15)uvw2) ,

and, in terms of x and y, this reads

16

15
x(1− x− y)(15− 50x− 27y + 40x2 + 16y2 + 40xy) .

For index 220, we obtain

p220(u, v, w) = 4u(4u− 1)v(4v − 1) +
32

5
uvw(2(4u− 1) + 2(4v − 1)) + (4w − 1)) ,
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then, using Maple, we have

64u2v2 − 16u2v − 16uv2 + 4uv + (256/5)u2vw − 32uvw + (256/5)uv2w + (128/5)uvw2 ,

and, in terms of x and y, this reads

4

5
x(1− x− y)(−15 + 80x+ 44y − 80x2 − 32y2 − 80xy) .

The following table reports these functions:

1 p400(x, y) = 1
15(1− x− y)

(15− 110x− 110y + 240x2 + 256xy + 240y2 − 160x3 + 224x2y + 224xy2 − 160y3)
4 p310(x, y) = 16

15x(1− x− y)(15− 50x− 27y + 40x2 + 16y2 + 40xy)
5 p220(x, y) = 4

5x(1− x− y)(−15 + 80x+ 44y − 80x2 − 32y2 − 80xy)

Type shape functions of the reduced 12-node triangle of degree 4.

To have all the shape functions, we simply apply adequate symmetries and rotations to the
three type functions using the form in (u, v, w) before writting the solution in (x, y). As an
example, one obtains the other functions of edge 400 − 040 by permuting u and v. Then, for
edge 400 − 004, the functions are those of edge 400 − 040 by changing v by w. To end, the
functions of edge 040− 004 are obtained from those of edge 400− 004 by permuting u and v.

This concludes the case of the 12-node triangle.

Reduced triangles of higher degree? Is there any higher order (e.g., 5, 6, etc.) reduced
triangles, actually we don’t thing so apart if only the P 2 space is imposed and discussing this
point is necessarily a rather technical task, therefore, we don’t pursuit this story of reduced
triangles.

5.2 Order d serendipity quadrilaterals

The 8-node quad of degree 2. For d = 2, we have the 9-node quad with one internal node
and the numbering of the nodes is as follow:

02 12 22 02 12 22

01 11 21 ==> 01 21

00 10 20 00 10 20

To define the reduced element, we impose space P d = P 2 to be included in the reduced polyno-
mial space. Then, the Taylor expansion gives the serendipity relation

4q(Â11) +
∑
ij∈V

q(Âij)− 2
∑
ij∈E

q(Âij) = 0 , (30)

where Â11 is the point, in the reference element (K̂), of coordinates (12 ,
1
2), V is the set of the

vertices in K̂ and E is the set of the edge nodes in K̂.

This Serendipity relation also insures that the monomials u2v and uv2 are part of the reduced
polynomial space.
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?

? ?

Proof: We consider the template depicted in the above diagram (left side) and we use a Taylor
expansion to write the value of a function q in Â00, ..., Â01, the 8 points in the boundary of the
template in terms of its value and its derivatives D1.(.), D2.(., .) evaluated at Â11. Since the
expansion terminates at order 2, for a vertex, here A00, we have

q(Â00) = q(Â11) +D1.(
−→
U00) +D2.(

−→
U00,
−→
U00) ,

where
−→
U00 =

−−−−→
Â11Â00, the derivatives are evaluated at Â11 and the symbol D2. includes (for

short) the coefficient, here 1
2 . The same holds for the other vertices in V, so, after summation,

we have ∑
ij∈V

q(Âij) = 4q(Â11) +
∑
ij∈V

D1.(
−→
Uij) +

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij) . (31)

A similar relation holds for the four nodes in E and, after summation, we have∑
ij∈E

q(Âij) = 4q(Â11) +
∑
ij∈E

D1.(
−→
Vij) +

∑
ij∈E

D2.(
−→
Vij ,
−→
Vij) . (32)

where
−→
Vij =

−−−−→
Â11Âij with ij ∈ E .

The derivative D1 is a linear operator, so
∑

ij∈V D
1.(
−→
Uij) = D1.(

∑
ij∈V
−→
Uij) = 0, similarly

we have
∑

ij∈E D
1.(
−→
Vij) = 0. Now,

−→
Vij can be written in terms of the

−→
Uij . Indeed, let us consider

Â10, we have Â10 = Â00+Â20
2 so

−→
V10 =

−−→
U00+

−−→
U20

2 holds. Since, again for index10, we have

D2.(
−→
V10,
−→
V10) = D2.(

−→
U00 +

−→
U20

2
,

−→
U00 +

−→
U20

2
) =

1

4
D2.(
−→
U00,
−→
U00) +

1

2
D2.(
−→
U00,
−→
U20) +

1

4
D2.(
−→
U20,
−→
U20) ,

and similar expressions for the other indices, we have∑
ij∈E

D2.(
−→
Vij ,
−→
Vij) =

1

2

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij)

+
1

2

{
D2.(
−→
U00,
−→
U20) +D2.(

−→
U20,
−→
U22) +D2.(

−→
U22,
−→
U02) +D2.(

−→
U02,
−→
U00)

}
,

but this last sum is null. Indeed,

D2.(
−→
U00,
−→
U20) +D2.(

−→
U20,
−→
U22) +D2.(

−→
U22,
−→
U02) +D2.(

−→
U02,
−→
U00) = 0 .

and, for the first two terms we have

D2.(
−→
U00,
−→
U20)+D

2.(
−→
U20,
−→
U22) = D2.(

−→
U00,
−→
U20)+D

2.(
−→
U22,
−→
U20) = D2.(

−→
U00+

−→
U22,
−→
U20) = D2.(

−→
0 ,
−→
U20) ,

while for the two others, we have

D2.(
−→
U22,
−→
U02)+D

2.(
−→
U02,
−→
U00) = D2.(

−→
U22,
−→
U02)+D

2.(
−→
U00,
−→
U02) = D2.(

−→
U22+

−→
U00,
−→
U02) = D2.(

−→
0 ,
−→
U02) ,

and the sum is

D2.(
−→
0 ,
−→
U20) +D2.(

−→
0 ,
−→
U02) = D2.(

−→
0 ,
−→
U20 +

−→
U02) = D2.(

−→
0 ,
−→
0 ) = 0 .
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Therefore ∑
ij∈E

D2.(
−→
Vij ,
−→
Vij) =

1

2

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij) ,

and identifying this sum in Relations (31) and (32) proves Relation (30) and completes the proof.

For a further usage, we introduce the value C11 defined by

C11 =
∑
ij∈E

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij) ,

and the condition C11 = 0 is the constitutive definition of the reduced element from which results
Relation (30).

This constitutive condition holds for the monomials u2v and uv2. Indeed, for these mono-
mails, we consider a Taylor expansion of order 3 and, in this case, C11 is written as

C11 =
∑
ij∈E

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij) +

∑
ij∈E

D3.(
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V

D3.(
−→
Uij ,
−→
Uij ,
−→
Uij) .

But similarly to the D1 derivatives (and for the same reason) we have∑
ij∈V

D3.(
−→
Uij ,
−→
Uij ,
−→
Uij) =

∑
ij∈E

D3.(
−→
Vij ,
−→
Vij ,
−→
Vij) = 0 ,

and then, for the monomial u2v of degree 3, the corresponding C11 is the same as in the consti-
tutive definition.

Remark. The monomial u2v2 is not included in the space. Indeed, considering the Taylor
expansion of order 4 for this monomial, we have to consider the quantity

C11 +
∑
ij∈E

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) ,

and check that
∑

ij∈E D
4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) − 1

2

∑
ij∈V D

4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) 6= 0 for the function

q = u2v2 and the given template. Let (u11, v11) be the coordinates of Â11, U1ij and U2ij be the

components of
−→
Uij and V1ij and V2ij be the components of

−→
Vij , we compute the D4 derivatives,

we have

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

1

4!

{
∂4q(u11, v11)

∂u4
U4
1ij + 4

∂4q(u11, v11)

∂u3∂v
U3
1ijU2ij

+ 6
∂4q(u11, v11)

∂u2∂v2
U2
1ij , U

2
2ij + 4

∂4q(u11, v11)

∂u∂v3
U1ijU

3
2ij +

∂4q(u11, v11)

∂v4
U4
2ij

}
,

but this reduces to

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

1

4

∂4q(u11, v11)

∂u2∂v2
U2
1ijU

2
2ij = U2

1ijU
2
2ij ,

so that, after summation, since the components of the
−→
Uij are respectively (−h,−h), (h,−h), (h, h), (−h, h),

we have ∑
ij∈V

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) = 4h4 ,
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where h = 1
2 . Similarly we sum on set E where the vectors involved have as components

(0,−h), (h, 0), (0, h), (−h, 0) and we find∑
ij∈E

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) = 0 ,

and the sum of these two quantities is not zero, u2v2 is not in the polynomial space (if it were,
this would come as a big surprise because the space would be the complete space!). Note that,
since we have found u2v and uv2, there is no real need to check that the other monomials are
not in the space because the number of monomials is equal to the dimension of the space.

As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

1

u v

u2 uv v2

u2v uv2

where we have the monomials of P 2 and the monomials of degree d + 1 = 3 with one variable
linearly involved.

As compared with the polynomial space of the complete element (the space Q2), we miss
u2v2. 2

?

? ?

Since the pij(u, v)s verify the same properties (e.g. Relation (30)), for all the indices ij, we
have

4pij(Â11) +
∑
lm∈V

pij(Âlm)− 2
∑
lm∈E

pij(Âlm) = 0 .

Now, we use Relation (16) to replace the pijs by their counterpart in terms of the complete
shape functions. For symmetry reasons, these relations reduce to

pij(u, v) = pcij(u, v) + αpc11(u, v) for ij ∈ V ,

and pij(u, v) = pcij(u, v) + β pc11(u, v) for ij ∈ E ,

in other words, there is only two coefficients. Let us fix ij = 00, then, we have

4p00(Â11) +
∑
lm∈V

p00(Ŝlmn)− 2
∑
lm∈E

p00(Âlm) = 0 ,

and this resumes to α = −1
4 , and the same (fix ij = 10) implies that β = 1

2 , see the following
diagram:

-1/4 1/2 -1/4

1/2 1/2

-1/4 1/2 -1/4
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With these values, we have the reduced shape functions fully defined via (16), see hereafter.

Then the reduced element, seen as a patch reads

M(u, v) =
∑
ij

pij(u, v)Aij ,

where ij lives in V and E , the set of vertices and edge nodes of the reduced element, i.e., 8
indices. We replace again the pijs by means of the pcijs, then we have

M(u, v) =
∑
ij

( pcij(u, v) + αijp
c
11(u, v) )Aij ,

with αij = α or β, then this reads also

M(u, v) =
∑
ij

pcij(u, v)Aij +
∑
ij

αijAijp
c
11(u, v) ,

therefore let
A11 =

∑
ij

αijAij ,

with again 8 indices so that

M(u, v) =
∑
ij

pcij(u, v)Aij ,

but now with 9 indices. In other words, we have invented the node A11 with which we can
define a complete element fully equivalent to the reduced element. As already seen, a complete
element is equivalent to the Bézier patch∑

i=0,2

∑
j=0,2

B2
i (u)B2

j (v)Pij ,

from which we obtain P11 and it turns out that P11 simply read as

P11 =
∑
ij

αijPij ,

e.g., the same expression as A11 with 8 indices (the proof is similar to that of the 9-node triangle).

In practice. The 8-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge A00A20,

P10 =
−A00 + 4A11 −A20

2
.

Then we compute P11 using the above formula. Then, just use Relation (15) to have the control
coefficients of the jacobian.
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The shape functions. With the value of α and β and using Relation (16), it is easy to
obtain the explicit expression of the shape functions. Indeed, only two of them must be made
explicit since, for symmetry reasons, the other functions are evident to obtain. Therefore, we
use Relation (10) to express pc00(u, v), pc10(u, v) and pc11(u, v) and then compute p00(u, v) and
p10(u, v), the two type functions, we find

p00(u, v) = (1− u)(1− v)(1− 2u− 2v) and p10(u, v) = 4u(1− u)(1− v) .

The two type functions are:

1 p00(u, v) = (1− u)(1− v)(1− 2u− 2v)
5 p10(u, v) = 4u(1− u)(1− v)

Type shape functions of the serendipity 8-node quad of degree 2.

By symmetry (u→ 1− u, (u, v)→ (v, u), etc.), the full list is the following:

1 p00(u, v) = (1− u)(1− v)(1− 2u− 2v)
2 p20(u, v) = u(1− v)(−1 + 2u− 2v)
3 p22(u, v) = uv(−3 + 2u+ 2v)
4 p02(u, v) = (1− u)v(−1− 2u+ 2v)
5 p10(u, v) = 4u(1− u)(1− v)
6 p21(u, v) = 4uv(1− v)
7 p22(u, v) = 4u(1− u)v
8 p01(u, v) = 4(1− u)v(1− v)

Shape functions of the serendipity 8-node quad of degree 2.

This concludes the case of the 8-node quadrilateral (note that this element can be defined
by means of a transfinite interpolation, [23]).

The 12-node quad of degree 3. Let us turn to d = 3. Here is the 16-node quad with four
internal nodes and the numbering of the nodes is as follow:

03 13 23 33 03 13 23 33

02 12 22 32 ==> 02 32

01 11 21 31 01 31

00 10 20 30 00 10 20 30

To define the reduced element, we impose space P d = P 3 to be included in the reduced polyno-
mial space. Then, the Taylor expansion gives the serendipity relations about A11, A21, A12 and
A22:

4q(Â11) +
∑

ij∈V11

q(Âij)− 2
∑

ij∈E11

q(Âij) = 0 ,

4q(Â21) +
∑

ij∈V21

q(Âij)− 2
∑

ij∈E21

q(Âij) = 0 ,

4q(Â12) +
∑

ij∈V12

q(Âij)− 2
∑

ij∈E12

q(Âij) = 0 ,
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4q(Â22) +
∑

ij∈V22

q(Âij)− 2
∑

ij∈E22

q(Âij) = 0 . (33)

where Â11 is the point, in the reference element (K̂), of coordinates (13 ,
1
3), V11 is the set of the

vertices in K̂ for the sub-template centered at A11 and E11 is the set of the edge nodes in K̂ for
the same sub-template and, similarly, for Â21, Â12and Â22, see the diagram.

. . . . . . . . 03 13 23 . . 13 23 33

02 12 22 . . 12 22 32 02 12 22 . . 12 22 32

01 11 21 . . 11 21 31 01 11 21 . . 11 21 31

00 10 20 . . 10 20 30 . . . . . . . .

As in the previous element, the above Serendipity relations also insure that the monomials
u3v and uv3 are part of the reduced polynomial space.

?

? ?

Proof: We return to the method used for the previous element. We consider the four sub-
templates depicted in the above diagram, each of them being centered at one ”central node”.
Given a sub-template, for example the one centered at Â11, we consider V11, e.g., Â00, ..., Â02

and E11, e.g., Â10, ..., Â01 and we use a Taylor expansion to write the values of a function q in
terms of the nodes of this two sets and the derivatives D1.(.), D2.(., .), D3.(., ., .) evaluated at
Â11. Since the expansion terminates at order 3, for a vertex, here A00, we have

q(Â00) = q(Â11) +D1.(
−→
U00) +D2.(

−→
U00,
−→
U00) +D3.(

−→
U00,
−→
U00,
−→
U00) ,

where
−→
U00 =

−−−−→
Â11Â00, the derivatives are evaluated at Â11 and the symbols D2., D3. include

(for short) the coefficient, here 1
2 and 1

6 . The same holds for the other vertices in V11, so, after
summation, we have∑

ij∈V11

q(Âij) = 4q(Â11) +
∑

ij∈V11

D1.(
−→
Uij) +

∑
ij∈V11

D2.(
−→
Uij ,
−→
Uij) +

∑
ij∈V11

D3.(
−→
Uij ,
−→
Uij ,
−→
Uij) . (34)

A similar relation holds for the nodes in E11 and the summation gives∑
ij∈E11

q(Âij) = 4q(Â11) +
∑

ij∈E11

D1.(
−→
Vij) +

∑
ij∈E11

D2.(
−→
Vij ,
−→
Vij) +

∑
ij∈E11

D3.(
−→
Vij ,
−→
Vij ,
−→
Vij) . (35)

where
−→
Vij =

−−−−→
Â11Âij with ij ∈ E11.

The derivative D1 is a linear operator, so
∑

ij∈V11 D
1.(
−→
Uij) = D1.(

∑
ij∈V11

−→
Uij) = 0, similarly

we have
∑

ij∈E11 D
1.(
−→
Vij) = 0 and the same holds for the derivative D3, and, in general, for all

the odd derivatives. Now,
−→
Vij can be written in terms of the

−→
Uij . Indeed, let us consider Â10, we

have Â10 = Â00+Â20
2 so

−→
V10 =

−−→
U00+

−−→
U20

2 holds and we return, for this sub-template, to the result
obtained in the previous element and then we obtain the above initial relation thus completing
the proof.

As we did in the previous element and for a further usage, we introduce the value C11 defined
by

C11 =
∑
ij∈E

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V

D2.(
−→
Uij ,
−→
Uij) ,
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but indeed, this reads

C11 =
∑

ij∈E11

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D2.(
−→
Uij ,
−→
Uij)+

∑
ij∈E11

D3.(
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D3.(
−→
Uij ,
−→
Uij ,
−→
Uij) ,

and the condition C11 = 0 together with C21 = C12 = C22 = 0 for the three other sub-templates
are the constitutive definitions of the reduced element from which results the four Relations (33).

We return to C11, C21, C12 and C22 but, since u3v is of degree 4, we need to examine values
like (here for C11)

C11 =
∑

ij∈E11

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D2.(
−→
Uij ,
−→
Uij) +

∑
ij∈E11

D3.(
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D3.(
−→
Uij ,
−→
Uij ,
−→
Uij)

+
∑

ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)

which resumes to

C11 =
∑

ij∈E11

D2.(
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D2.(
−→
Uij ,
−→
Uij)+

∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij)−

1

2

∑
ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) ,

and C11 will be zero if
∑

ij∈E11 D
4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) − 1

2

∑
ij∈V11 D

4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) vanishes.

Let (u11, v11) be the coordinates of Â11, U1ij and U2ij be the components of
−→
Uij and V1ij and

V2ij be the components of
−→
Vij , we compute the D4 derivatives, we have

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

1

4!

{
∂4q(u11, v11)

∂u4
U4
1ij + 4

∂4q(u11, v11)

∂u3∂v
U3
1ijU2ij

+ 6
∂4q(u11, v11)

∂u2∂v2
U2
1ij , U

2
2ij + 4

∂4q(u11, v11)

∂u∂v3
U1ijU

3
2ij +

∂4q(u11, v11)

∂v4
U4
2ij

}
,

but, while q = u3v, this reduces to

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

1

4!
4
∂4q(u11, v11)

∂u3∂v
U3
1ijU2ij =

1

6
U3
1ijU2ij ,

so that, after summation, since the components of the
−→
Uij are respectively (−h,−h), (h,−h), (h, h), (−h, h),

we have

−1

2

∑
ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) = − 1

12
(h4 − h4 + h4 − h4) = 0 ,

where h = 1
2 . Similarly we sum on set E where the vectors involved have as components

(0,−h), (h, 0), (0, h), (−h, 0) and we find∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) =

1

6
(0 + 0 + 0 + 0) = 0 ,

and the sum of these two quantities is zero and the same holds for the three other sums (for
C21, c12 and C22) and u3v is in the space, so it is for uv3.

Now, with these two monomials, the dimension of the space is 12, so there is no more
monomials in this space.
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As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

1

u v

u2 uv v2

u3 u2v uv2 v3

u3v uv3

where we have the monomials of P 3 and the monomials of degree d + 1 = 4 with one variable
linearly involved. As compared with the polynomial space of the complete element (the space
Q3), we miss u2v2, u3v2, u2v3 and u3v3. 2

?

? ?

From the four Serendipity relations, we write a system where the unknowns are the values
of the function q at the four ”central” nodes, we obtain the following system:

4 −2 −2 1
−2 4 1 −2
−2 1 4 −2
1 −2 −2 4




q(Â11)

q(Â21)

q(Â12)

q(Â22)

 =


−q(Â00)− q(Â20)− q(Â02) + 2q(Â10) + 2q(Â01)

−q(Â10)− q(Â30)− q(Â32) + 2q(Â20) + 2q(Â31)

−q(Â01)− q(Â23)− q(Â03) + 2q(Â13) + 2q(Â02)

−q(Â31)− q(Â33)− q(Â13) + 2q(Â32) + 2q(Â23)

 .

The solution (Gauss elimination by hand or Maple), here for Â22, reads

q(Â22) =
1

9
(−q(Â00)− 2q(Â30)− 4q(Â33)− 2q(Â03) + 3q(Â20) + 6q(Â32) + 6q(Â23) + 3q(Â02))

which corresponds to the following diagram

-2/9 . 2/3 -4/9

1/3 . [2.2] 2/3

. . . .

-1/9 . 1/3 -2/9

and similar solutions for the other ”central” values. In extenso, we have

9q(Â22) + q(Â00) + 2q(Â30) + 4q(Â33) + 2q(Â03)− 3q(Â20)− 6q(Â32)− 6q(Â23)− 3q(Â02) = 0 ,

9q(Â11) + 4q(Â00) + 2q(Â30) + q(Â33) + 2q(Â03)− 6q(Â10)− 3q(Â31)− 3q(Â13)− 6q(Â01) = 0 ,

9q(Â21) + 2q(Â00) + 4q(Â30) + 2q(Â33) + q(Â03)− 6q(Â20)− 6q(Â31)− 3q(Â23)− 3q(Â01) = 0 ,

9q(Â12)+2q(Â00)+q(Â30)+2q(Â33)+4q(Â03)−3q(Â10)−3q(Â32)−6q(Â13)−6q(Â02) = 0 . (36)

With these values, we have the reduced shape functions fully defined via (16), see hereafter.
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Then the reduced element, seen as a patch reads

M(u, v) =
∑
ij

pij(u, v)Aij ,

where ij lives in V and E , the set of vertices and edge nodes of the reduced element, i.e., 12
indices. We replace again the pijs by means of the pcijs, then, with evident notations, we have

M(u, v) =
∑
ij

( pcij(u, v) + α11
ij p

c
11(u, v) + α21

ij p
c
21(u, v) + α12

ij p
c
12(u, v) + α22

ij p
c
22(u, v) )Aij ,

with, for example, α22
ij , the coefficients in the above diagram and similar values for the 3 other

nodes. Then, this reads also

M(u, v) =
∑
ij

pcij(u, v)Aij +
∑
ij

α11
ij Aijp

c
11(u, v) +

∑
ij

α21
ij Aijp

c
21(u, v)

+
∑
ij

α12
ij Aijp

c
12(u, v) +

∑
ij

α22
ij Aijp

c
22(u, v) ,

therefore let
A11 =

∑
ij

α11
ij Aij , A21 =

∑
ij

α21
ij Aij , ... ,

again with 12 indices, so that the patch is

M(u, v) =
∑
ij

pcij(u, v)Aij ,

but now with 16 indices. In other words, we have invented the nodes A11, A21, A12 and A22

with which we can define a complete element fully equivalent to the reduced element. As already
seen, a complete element is equivalent to the Bézier patch∑

i=0,3

∑
j=0,3

B3
i (u)B3

j (v)Pij ,

from which we obtain P11, P21, P12 and P22 and it turns out that P11 simply read as

P11 =
∑
ij

α11
ij Pij ,

with, here, 12 indices, e.g., the same expression as A11 and similar values for the 3 other control
points, see [20].

In practice. The 12-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge A00A30,

P10 =
−5A00 + 18A10 − 9A20 + 2A30

6
and P20 =

2A00 − 9A10 + 18A20 − 5A30

6
.

Then we compute P11, P21, P12 and P22 using the above formulae. Then, just use Relation (15)
to have the control coefficients of the jacobian.
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The shape functions. With the values of αkl
ij and using Relation (16), it is easy to obtain the

explicit expression of the shape functions. Indeed, only two of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)
to express pc00(u, v), pc10(u, v) and pc11(u, v), pc21(u, v), pc12(u, v) and pc22(u, v) and then compute
p00(u, v) and p10(u, v), the two type functions, we find

p00(u, v) =
9

2
(1− u)(1− v)(

2

9
− u− v + u2 + v2) and p10(u, v) =

9

2
u(1− u)(2− 3u)(1− v) .

The two type functions are:

1 p00(u, v) = 9
2(1− u)(1− v)(29 − u− v + u2 + v2)

5 p10(u, v) = 9
2u(1− u)(2− 3u)(1− v)

Type shape functions of the serendipity 12-node quad of degree 3.

By symmetry (u→ 1− u, (u, v)→ (v, u), etc.), the full list is the following:

1 p00(u, v) = 9
2(1− u)(1− v)(29 − u− v + u2 + v2)

2 p30(u, v) = 9
2u(1− v)(29 − u− v + u2 + v2)

3 p33(u, v) = 9
2uv(29 − u− v + u2 + v2)

4 p03(u, v) = 9
2(1− u)v(29 − u− v + u2 + v2)

5 p10(u, v) = 9
2u(1− u)(2− 3u)(1− v)

6 p20(u, v) = 9
2u(1− u)(3u− 1)(1− v)

7 p31(u, v) = 9
2v(1− v)(2− 3v)u

8 p32(u, v) = 9
2v(1− v)(3v − 1)u

9 p23(u, v) = 9
2u(1− u)(3u− 1)v

10 p13(u, v) = 9
2u(1− u)(2− 3u)v

11 p02(u, v) = 9
2v(1− v)(3v − 1)(1− u)

12 p01(u, v) = 9
2v(1− v)(2− 3v)(1− u)

Shape functions of the serendipity 12-node quad of degree 3.

This concludes the case of the 12-node quad (note that this element can also be defined by
means of a transfinite interpolation, [23]).

The 17-node quad of degree 4. Let us turn to d = 4. The 25-node quad includes 9 internal
nodes structured as follow:

04 14 24 34 44 04 14 24 34 44

03 13 23 33 43 03 43

02 12 22 32 42 ==> 02 22 42

01 11 21 31 41 01 41

00 10 20 30 40 00 10 20 30 40

We follow the same method using a Taylor expansion and looking for P d = P 4 on the sub-
templates (see the diagram) centered at the ”central” nodes. As for the sub-template centered
at Â11, we write the vertex Â00 and the other vertices and, after summation (the terms in D1

and in D3 sum to zero), we have

q(Â00) + q(Â20) + q(Â22) + q(Â02) = 4q(Â11)
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+D2.(
−→
U00,
−→
U00) +D2.(

−→
U20,
−→
U20) +D2.(

−→
U22,
−→
U22) +D2.(

−→
U02,
−→
U02)

+D4.(
−→
U00,
−→
U00,
−→
U00,
−→
U00)+D

4.(
−→
U20,
−→
U20,
−→
U20,
−→
U20)+D

4.(
−→
U22,
−→
U22,
−→
U22,
−→
U22)+D

4.(
−→
U02,
−→
U02,
−→
U02,
−→
U02) .
(37)

written as ∑
ij∈V11

q(Âij) = 4q(Â11) +
∑

ij∈V11

D2.(
−→
Uij ,
−→
Uij) +

∑
ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) ,

with the same notations as before.

For the nodes in E11, we have a similar relation∑
ij∈E11

q(Âij) = 4q(Â11) +
∑

ij∈E11

D2.(
−→
Vij ,
−→
Vij) +

∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) .

As for the previous element, we have∑
ij∈E11

D2.(
−→
Vij ,
−→
Vij) =

1

2

∑
ij∈V11

D2.(
−→
Uij ,
−→
Uij) ,

from these we combine the two above lines so as to cancel the terms in D2 and we obtain∑
ij∈V11

q(Âij)−2
∑

ij∈E11

q(Âij) = −4q(Â11)+
∑

ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)−2

∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) ,

But the D4 derivatives are a constant, let us define C11 =
∑

ij∈V11 D
4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) −

2
∑

ij∈E11 D
4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij), then we have the relation

C11 = 4q(Â11) +
∑

ij∈V11

q(Âij)− 2
∑

ij∈E11

q(Âij) . (38)

Then, we have the relation about Â11 for the first sub-template

. . . . .

. . . . .

02 12 22 . .

01 11 21 . .

00 10 20 . .

and we repeat the same process for all the other sub-templates. As a consequence, we ob-
tain 9 relations, say

C11 = 4q(Â11) +
∑

ij∈V11

q(Âij)− 2
∑

ij∈E11

q(Âij) ,

C21 = 4q(Â21) +
∑

ij∈V21

q(Âij)− 2
∑

ij∈E21

q(Âij) ,

...

C22 = 4q(Â22) +
∑

ij∈V22

q(Âij)− 2
∑

ij∈E22

q(Âij) .

Now since we have C11 = C21 = ... = C22, therefore only 8 equations, we consider the ”central”
function (index 22) as known so as to have only 8 unknowns and a 8 × 8 system in hand (and
the reduced element has 17 nodes, one being internal).
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The above system is the constitutive Serendipity relation. We will show that the monomials
u4v and uv4 are also covered. For monomial u4v, the Taylor expansion of degree 5 gives:

C11 =
∑

ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)− 2

∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) ,

as ∑
ij∈V11

D5.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

∑
ij∈E11

D5.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) = 0 .

Now

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

1

4!

{
∂4q(u11, v11)

∂u4
U4
1ij + 4

∂4q(u11, v11)

∂u3∂v
U3
1ijU2ij

+ 6
∂4q(u11, v11)

∂u2∂v2
U2
1ij , U

2
2ij + 4

∂4q(u11, v11)

∂u∂v3
U1ijU

3
2ij +

∂4q(u11, v11)

∂v4
U4
2ij

}
,

but each partial derivatives are linear, more precisely:

∂4q(u11, v11)

∂u4
= 4! v11 ,

∂4q(u11, v11)

∂u3∂v
= 3!u11 ,

and the other partials are null. Therefore

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) = v11U

4
1ij + u11U

3
1ijU2ij .

Hence,∑
ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

∑
ij∈V11

{
v11U

4
1ij + u11U

3
1ijU2ij

}
=
∑

ij∈V11

{
v11U

4
1ij

}
= 4v11h

4 ,

now, we consider∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) =

∑
ij∈V11

{
v11V

4
1ij + u11V

3
1ijV2ij

}
=
∑

ij∈V11

{
v11V

4
1ij

}
= 2v11h

4 .

Then, we have C11 = 0 which is a particular case of the constitutive relation.

As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

1

u v

u2 uv v2

u3 u2v uv2 v3

u4 u3v u2v2 uv3 v4

u4v uv4
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where we have the monomials of P 4 and the monomials of degree d + 1 = 5 with one variable
linearly involved. As compared with the polynomial space of the complete element (the space
Q4), we miss the 8 monomials among the uivjs with i+ j ≥ 5 apart u4v and uv4.

Now, we solve the Serendipity system to finding the Serendipity relationships. The first
equation results from C11 = C21, and we find

6q(Â11)− 6q(Â21) + 2q(Â31)− 3q(Â12) + 3q(Â22)− q(Â32) =

−q(Â00) + 3q(Â10)− 3q(Â20) + q(Â30) + 2q(Â01)− q(Â02) .

Once the 7 other equations, see [20], are obtained, we solve the system, using Maple, and the
solution, by symmetry, can be deduced from only two precise (type) solutions, the one in Â11

and the other in Â21, we have

q(Â11) =
1

64

{
−27q(Â00) + 48q(Â10) + 48q(Â01)− 3q(Â40) + 16q(Â41) + 16q(Â14) + 5q(Â44)

−3q(Â04)− 18q(Â20)− 18q(Â02) + 36q(Â22)− 18q(Â42)− 18q(Â24)
}
, (39)

and

q(Â21) =
1

16

{
−3q(Â00) + 6q(Â20) + 8q(Â01)− 6q(Â02) + 12q(Â22)− 3q(Â40) + 8q(Â41)− 6q(Â42)

−2q(Â24) + 1q(Â44) + 1q(Â04)
}
, (40)

and the corresponding diagrams are

-3/64 16/64 -18/64 0 5/64 1/16 0 -2/16 0 1/16

0 0 0 0

-18/64 36/64 -18/64 -6/16 12/16 -6/16

48/64 [1.1] 16/64 8/16 [2.1] 8/16

-27/64 48/64 -18/64 0 -3/64 -3/16 0 6/16 0 -3/16

Using these coefficients, we have the reduced shape functions fully defined via (16), see
hereafter.

Then the reduced element, seen as a patch reads

M(u, v) =
∑
ij

pij(u, v)Aij ,

where ij denotes the indices of the (4) vertices, the (12) edge nodes and the (1) internal node
of the reduced element, i.e., 17 indices. We replace again the pijs by means of the pcijs, then,
with evident notations, we have

M(u, v) =
∑
ij

{
pcij(u, v) +

∑
kl

αkl
ijp

c
kl(u, v)

}
Aij ,
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with, for example, α11
ij and α21

ij , the coefficients in the above diagrams. Then, this also reads

M(u, v) =
∑
ij

pcij(u, v)Aij +
∑
ij

∑
kl

αkl
ijAijp

c
kl(u, v) =

∑
ij

pcij(u, v)Aij +
∑
kl

∑
ij

αkl
ijAijp

c
kl(u, v) ,

therefore let
Akl =

∑
ij

αkl
ijAij ,

again with 17 indices, so that the patch is

M(u, v) =
∑
ij

pcij(u, v)Aij ,

but now with 25 indices. In other words, we have invented the nodes A11, A21, ... with which
we can define a complete element fully equivalent to the reduced element. As already seen, a
complete element is equivalent to the Bézier patch∑

i=0,4

∑
j=0,4

B4
i (u)B4

j (v)Pij ,

from which we obtain P11, P21, ... and the relations are not those of the above nodes.

In practice. The 17-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge A00A40,

P10 =
−13A00 + 48A10 − 36A20 + 16A30 − 3A40

12
,

P20 =
13A00 − 64A10 + 120A20 − 64A30 + 13A40

18
,

P30 =
−3A00 + 16A10 − 36A20 + 48A30 − 13A40

12
.

Then we compute P11, P21, ... by solving the corresponding system. Then, just use Relation (15)
to have the control coefficients of the jacobian.

The shape functions. With the values of αkl
ij and using Relation (16), it is easy to obtain the

explicit expression of the shape functions. Indeed, only four of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)
to express pc00(u, v), pc10(u, v), pc20(u, v) and pc22(u, v) with pc11(u, v), pc21(u, v), ..., pc12(u, v) and
then compute p00(u, v), p10(u, v), p20(u, v) and p22(u, v), the four type functions, we find

p00(u, v) = 1/3(1− u)(1− v)(3− 22u− 22v + 48u2 + 12uv + 48v2 − 32u3 − 32v3) ,

p10(u, v) = 16/3(u)(1− u)(1− 2u)(3− 4u)(1− v) ,

p20(u, v) = 4u(1− u)(1− v)(−3 + 16u− 2v − 16u2) ,

p22(u, v) = 16u(1− u)v(1− v) .

The four type functions are:
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1 p00(u, v) = 1
3(1− u)(1− v)(3− 22u− 22v + 48u2 + 12uv + 48v2 − 32u3 − 32v3)

5 p10(u, v) = 16
3 u(1− u)(1− 2u)(3− 4u)(1− v)

6 p20(u, v) = 4u(1− u)(1− v)(−3 + 16u− 2v − 16u2)
17 p22(u, v) = 16u(1− u)v(1− v)

Type shape functions of the serendipity 17-node quad of degree 4.

By symmetry (u→ 1− u, (u, v)→ (v, u), etc.), the full list is the following:

1 p00(u, v) = 1
3(1− u)(1− v)(3− 22u− 22v + 48u2 + 12uv + 48v2 − 32u3 − 32v3)

2 p40(u, v) = 1
3u(1− v)(−3 + 22u− 10v − 48u2 − 12uv + 48v2 + 32u3 − 32v3)

3 p44(u, v) = 1
3uv(3 + 10u+ 10v − 48u2 + 12uv − 48v2 + 32u3 + 32v3)

4 p04(u, v) = 1
3(1− u)v(−3− 10u+ 22v + 48u2 − 12uv − 48v2 − 32u3 + 32v3)

5 p10(u, v) = 16
3 u(1− u)(1− 2u)(3− 4u)(1− v)

6 p20(u, v) = 4u(1− u)(1− v)(−3 + 16u− 2v − 16u2)
7 p30(u, v) = 16

3 u(1− u)(1− 2u)(1− 4u)(1− v)
8 p41(u, v) = 16

3 uv(1− v)(1− 2v)(3− 4v)
9 p42(u, v) = 4v(1− v)u(−3 + 16v − 2u− 16v2)
10 p43(u, v) = 16

3 uv(1− v)(1− 2v)(1− 4v)
11 p34(u, v) = 16

3 u(1− u)(1− 2u)(1− 4u)v
12 p24(u, v) = 4u(1− u)v(−3 + 16u− 2v − 16u2)
13 p14(u, v) = 16

3 u(1− u)(1− 2u)(3− 4u)v
14 p03(u, v) = 16

3 (1− u)v(1− v)(1− 2v)(1− 4v)
15 p02(u, v) = 4v(1− v)(1− u)(−3 + 16v − 2u− 16v2)
16 p01(u, v) = 16

3 (1− u)v(1− v)(1− 2v)(3− 4v)
17 p22(u, v) = 16u(1− u)v(1− v)

Shape functions of the serendipity 17-node quad of degree 4.

This concludes the case of the 17-node quad.

The 24-node quad of degree 5. Let us turn to d = 5. The 36-node quad includes 16 internal
nodes structured as follow:

05 15 25 35 45 55 05 15 25 35 45 55

04 14 24 34 44 54 04 54

03 13 23 33 43 53 03 23 33 53

02 12 22 32 42 52 ==> 02 22 32 52

01 11 21 31 41 51 01 51

00 10 20 30 40 50 00 10 20 30 40 50

A serendipity quad of degree 5 can be found in [1] and [15] but this element has 23 nodes
therefore only 3 internal nodes. As a consequence, the internal nodes cannot be symmetrically
located. While this seems appropriate for a bidimensional element, we are convinced that it is
not suitable in three dimensions if we consider the faces of an hexahedron of degree 5. This is
the reason why we like to find a different element, now, with 24 nodes.

As a matter of fact, what we did for the quad of degree 4 applies here for all the sub-templates,
so that we have relations like∑

ij∈V11

q(Âij)−2
∑

ij∈E11

q(Âij) = −4q(Â11)+
∑

ij∈V11

D4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)−2

∑
ij∈E11

D4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) ,
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But now the D4 derivatives are not constant but are a polynomial of degree 1 in terms of the

coordinates of Â11 for the given configuration of the vectors
−→
Uij and

−→
Vij involved in the sub-

template. Let us define C11 =
∑

ij∈V11 D
4.(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)− 2

∑
ij∈E11 D

4.(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij), so

that the previous relation reads

C11 = 4q(Â11) +
∑

ij∈V11

q(Âij)− 2
∑

ij∈E11

q(Âij) . (41)

Let (u11, v11) be the coordinates of Â11, U1ij and U2ij be the components of
−→
Uij and V1ij and

V2ij be the components of
−→
Vij , we compute the D4 derivatives, we have

C11 = C11(u11, v11) =
∑

ij∈V11

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)−2

∑
ij∈E11

D4(u11, v11).(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) ,

and

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

∂4q(u11, v11)

∂u4
U4
1ij + 4

∂4q(u11, v11)

∂u3∂v
U3
1ijU2ij

+ 6
∂4q(u11, v11)

∂u2∂v2
U2
1ijU

2
2ij + 4

∂4q(u11, v11)

∂u∂v3
U1ijU

3
2ij +

∂4q(u11, v11)

∂v4
U4
2ij ,

simply written as (with Ck
4 the binomial coefficients)

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

4∑
k=0

Ck
4

∂4q(u11, v11)

∂uk∂v4−k
Uk
1ijU

4−k
2ij .

Since the degree of q is 5, we have

∂4q(u11, v11)

∂uk∂v4−k
= αku11 + βkv11 + γk ,

with some coefficients αk, βk and γk. The idea is to consider C21 and, more precisely, the term

D4(u21, v21).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) and to look at the difference

D4(u21, v21).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)−D4(u11, v11).(

−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) ,

this reads ∑
k

Ck
4 {(αku21 + βkv21 + γk)− (αku11 + βkv11 + γk)}Uk

1ijU
4−k
2ij ,

but v21 = v11 and u21 − u11 = 1
5 , so this resumes to∑

k

Ck
4αk(u21 − u11)Uk

1ijU
4−k
2ij =

∑
k

Ck
4

αk

5
Uk
1ijU

4−k
2ij ,

which is then independent of the position. For the other term in C11 and C21, we have the
same result. In the other direction, say by considering C12 − C11, we also have the same
conclusion. Therefore, we impose the equality between the difference of two consecutive Cij in
both directions. This results in 8 relations in the u-directions, 2 by line where v is constant.
Then we impose the equality between the four lines v constant, therefore 3 more relations and,
by summation, we have 11 relations in the u-direction. We also have a priori 11 similar relations
in the v-direction. But some are redundant. Indeed, once the relations for the lines (in u) are
imposed, the 2 relations for the first column (in v) induce the 9 others. Therefore we have 13

36



relations and 12 unknowns. It means that there exists a relation about the lines which is still
redundant and that gives a dependency of one central node with the free nodes.

Now, we show the inclusion of the monomials u5v and uv5 in the reduced polynomial space
using the Serendipity relations (like C12 − C11 = constante). The Taylor expansion of degree 6
of monomial u5v leads to

C11 =
∑

ij∈V11

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)− 2

∑
ij∈E11

D4(u11, v11).(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij)

+
∑

ij∈V11

D6(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)− 2

∑
ij∈E11

D6(u11, v11).(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) .

In this expression, partials in D6 are constant while those in D4 are polynomials of degree 2.∑
ij∈V11

D4(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij) =

∑
ij∈V11

{
5u11v11U

4
1ij + 10u211U

3
1ijU2ij

}
=
∑

ij∈V11

{
5u11v11U

4
1ij

}
= 20u11v11h

4 ,

Now ∑
ij∈E11

D4(u11, v11).(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) =

∑
ij∈V11

{
5u11v11V

4
1ij + 10u211V

3
1ijV2ij

}
=
∑

ij∈V11

{
5u11v11V

4
1ij

}
== 10u11v11h

4 ,

then

C11 =
∑

ij∈V11

D6(u11, v11).(
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij ,
−→
Uij)−2

∑
ij∈E11

D6(u11, v11).(
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij ,
−→
Vij) ,

which depends only on Uij and Vij . Hence, we obtain C12 −C11 = 0 which is again a particular
case of the Serendipity relations.

As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

1

u v

u2 uv v2

u3 u2v uv2 v3

u4 u3v u2v2 uv3 v4

u5 u4v u3v2 u2v3 uv4 v5

u5v u3v3 uv5

where we have the monomials of P 5 and the monomials of degree d + 1 = 6 with one variable
linearly involved, however, plus u3v3. As compared with the polynomial space of the complete
element (the space Q5), we miss the 12 monomials among the uivjs with i + j ≥ 6 apart u5v,
u3v3 and uv5.
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Remark 1: An alternative solution can be found by selecting, as internal nodes, the other
possible symmetric configuration (11, 41, 44, 14).

To solve the Serendipity system, we give here the main lines of the solution (see [20] for a
detailled description).

First of all, we write the 11 relations related to the lines, for example, the first results from
C21 − C11 = C31 − C21 using relations like (41), it holds

(R1) 12q(Â21) + 4q(Â10) + 4q(Â30) + 4q(Â32) + 4q(Â12)− 6q(Â20)− 8q(Â31)− 6q(Â22)

−8q(Â11)− q(Â00)− q(Â02) + 2q(Â01)− q(Â40)− q(Â42) + 2q(Â41) = 0 .

With the 10 other equalities, we obtain a system where the matrix is a 11×12 matrix. Then we
consider the augmented matrix made up of the previous with an additional column representing
terms independent of the unknowns, therefore a 11 × 13 matrix. The rank of this augmented
matrix is 10 (as 2 relations relative to the columns are not yet considered). An LU decomposition
of this matrix reveals a line of zeros apart from the entry corresponding to the augmented column.
In order to have a solution, this last entry must be null from which we have a dependency between
the four (central) unknowns (indices 22, 32, 23, 33), we find

1

5
q(Â00)− q(Â20) + q(Â30)−

1

5
q(Â50)−

1

5
q(Â05) +

1

5
q(Â55) + q(Â25)− q(Â35)

− 5q(Â32) + 5q(Â22)− q(Â02) + q(Â52) + 5q(Â33)− 5q(Â23) + q(Â03)− q(Â53) = 0 . (42)

Therefore, assuming the above condition and using the 10 other equations of the above lines
completed by the 2 equations in the v directions, we obtain a 12× 12 matrix of rank 12. Using
Maple, we obtain the solution. It is as follow (for short read aij like q(Âij):

a11 = 4/5a10 + 22/45a30− 14/9a32− 38/45a20 + 22/9a22− 74/225a00− 38/45a02 + 4/5a01

−26/225a50− 2/45a52 + 1/5a51 + 10/9a33− 14/9a23 + 22/45a03− 2/45a53− 2/45a35

+1/5a15− 2/45a25− 26/225a05 + 1/225a55

a21 = 4/15a30− 4/3a32 + 8/3a22− 8/75a00− 16/15a02 + 3/5a01− 4/25a50− 4/15a52

+2/5a51 + 4/3a33− 2a23 + 2/3a03− 4/15a35 + 1/3a25− 7/75a05 + 2/75a55

a31 = 3/5a30− 1/3a32− 1/3a20 + 5/3a22− 1/25a00− 13/15a02 + 2/5a01− 17/75a50

−7/15a52 + 3/5a51 + a33− 5/3a23 + 3/5a03 + 1/15a53− 4/15a35 + 1/3a25

−7/75a05 + 2/75a55

a41 = −4/9a30 + 4/9a32 + 4/45a20 + 4/9a22− 8/225a00− 4/9a02 + 1/5a01 + 4/5a40

−92/225a50− 4/9a52 + 4/5a51 + 4/9a33− 8/9a23 + 16/45a03 + 4/45a53− 4/9a35

+16/45a25 + 1/5a45− 17/225a05− 8/225a55

a42 = −4/5a30 + 4/3a32 + 2/5a20− 2/3a22− 1/25a00 + 1/15a02 + 3/5a40− 4/25a50

+4/15a52− 8/15a35 + 4/15a25 + 2/5a45− 2/75a05− 8/75a55

a43 = −8/15a30 + 4/15a20− 2/75a00 + 2/5a40− 8/75a50 + 4/3a33− 2/3a23 + 1/15a03

+4/15a53− 4/5a35 + 2/5a25 + 3/5a45− 1/25a05− 4/25a55
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a44 = −4/9a30 + 4/9a32 + 16/45a20− 8/9a22− 17/225a00 + 16/45a02 + 1/5a40− 8/225a50

+4/45a52 + 4/9a33 + 4/9a23− 4/9a03 + 1/5a04− 4/9a53 + 4/5a54− 4/9a35 + 4/45a25

+4/5a45− 8/225a05− 92/225a55

a34 = −4/15a30 + a32 + 1/3a20− 5/3a22− 7/75a00 + 3/5a02 + 2/75a50 + 1/15a52− 1/3a33

+5/3a23− 13/15a03 + 2/5a04− 7/15a53 + 3/5a54 + 3/5a35− 1/3a25− 1/25a05− 17/75a55

a24 = −4/15a30 + 4/3a32 + 1/3a20− 2a22− 7/75a00 + 2/3a02 + 2/75a50− 4/3a33 + 8/3a23

−16/15a03 + 3/5a04− 4/15a53 + 2/5a54 + 4/15a35− 8/75a05− 4/25a55

a14 = 1/5a10− 2/45a30 + 10/9a32− 2/45a20− 14/9a22− 26/225a00 + 22/45a02 + 1/225a50

−2/45a52− 14/9a33 + 22/9a23− 38/45a03 + 4/5a04− 2/45a53 + 1/5a54 + 22/45a35

+4/5a15− 38/45a25− 74/225a05− 26/225a55

a13 = 2/5a10 + 4/15a30− 8/15a20− 8/75a00− 2/75a50− 2/3a33 + 4/3a23 + 4/15

a03 + 1/15a53 + 2/5a35 + 3/5a15− 4/5a25− 4/25a05− 1/25a55

a12 = 3/5a10 + 2/5a30− 2/3a32− 4/5a20 + 4/3a22− 4/25a00 + 4/15a02− 1/25a50

+ 1/15a52 + 4/15a35 + 2/5a15− 8/15a25− 8/75a05− 2/75a55 . (43)

It is clear that this solution is not symmetric. To retrieve a full symmetry, we will use Rela-
tion (42) and more precisely this relation seen as

0 = − 1

25
q(00) +

1

5
q(20)− 1

5
q(30) +

1

25
q(50) +

1

25
q(05)− 1

25
q(55)− 1

5
q(25) +

1

5
q(35)

+ q(32)− q(22) +
1

5
q(02)− 1

5
q(52) + q(23)− q(33)− 1

5
q(03) +

1

5
q(53) . (44)

where the coefficients are depicted in the following diagram:

1/25 0 -1/5 1/5 0 -1/25

0 0

-1/5 1 [33] 1/5

1/5 -1 1 -1/5

0 0

-1/25 0 1/5 -1/5 0 1/25

The process is made up of two steps. First, we establish the symmetry for indices 11, 14, 41, 44
and then for the other indices. We have:

a11 = 4/5a10 + 22/45a30− 14/9a32− 38/45a20 + 22/9a22− 74/225a00− 38/45a02 + 4/5a01

−26/225a50− 2/45a52 + 1/5a51 + 10/9a33− 14/9a23 + 22/45a03− 2/45a53− 2/45a35

+1/5a15− 2/45a25− 26/225a05 + 1/225a55
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+α

{
− 1

25
a00 +

1

5
a20− 1

5
a30 +

1

25
a50 +

1

25
a05− 1

25
a55− 1

5
a25 +

1

5
a35

+a32− a22 +
1

5
a02− 1

5
a52 + a23− a33− 1

5
a03 +

1

5
a53

}
,

and

a41 = −4/9a30 + 4/9a32 + 4/45a20 + 4/9a22− 8/225a00− 4/9a02 + 1/5a01 + 4/5a40

−92/225a50− 4/9a52 + 4/5a51 + 4/9a33− 8/9a23 + 16/45a03 + 4/45a53− 4/9a35

+16/45a25 + 1/5a45− 17/225a05− 8/225a55

+β

{
− 1

25
a00 +

1

5
a20− 1

5
a30 +

1

25
a50 +

1

25
a05− 1

25
a55− 1

5
a25 +

1

5
a35

+a32− a22 +
1

5
a02− 1

5
a52 + a23− a33− 1

5
a03 +

1

5
a53

}
.

Since 11 must see 00 as 41 sees 50 (and vice versa), we obtain the first relation

α+ β = 2 .

From this relation the other symmetries hold. Up to now, we have a family of solutions (e.g. an
infinity number of solutions) depending on one parameter, α, which gives the symmetry for the
four above indices. As an illustration, we obtain the following diagram for index 11 (with the
scaling factor 1

225 and α denoted by a ):

-26+9a 45 -10-45a -10+45a 0 1-9a

0 0

110-45a -350+225a 250-225a -10+45a

-190+45a 550-225a -350+225a -10-45a

180 [11] 45

-74-9a 180 -190+45a 110-45a 0 -26+9a

Second, we consider the symmetry for indices 21, 31, 24, 34 and 12, 13, 42, 43. We have

a21 = 4/15a30− 4/3a32 + 8/3a22− 8/75a00− 16/15a02 + 3/5a01− 4/25a50− 4/15a52

+2/5a51 + 4/3a33− 2a23 + 2/3a03− 4/15a35 + 1/3a25− 7/75a05 + 2/75a55

+γ

{
− 1

25
a00 +

1

5
a20− 1

5
a30 +

1

25
a50 +

1

25
a05− 1

25
a55− 1

5
a25 +

1

5
a35

+a32− a22 +
1

5
a02− 1

5
a52 + a23− a33− 1

5
a03 +

1

5
a53

}
,

a12 = 3/5a10 + 2/5a30− 2/3a32− 4/5a20 + 4/3a22− 4/25a00 + 4/15a02− 1/25a50

+1/15a52 + 4/15a35 + 2/5a15− 8/15a25− 8/75a05− 2/75a55

40



+δ

{
− 1

25
a00 +

1

5
a20− 1

5
a30 +

1

25
a50 +

1

25
a05− 1

25
a55− 1

5
a25 +

1

5
a35

+a32− a22 +
1

5
a02− 1

5
a52 + a23− a33− 1

5
a03 +

1

5
a53

}
,

a13 = 2/5a10 + 4/15a30− 8/15a20− 8/75a00− 2/75a50− 2/3a33 + 4/3a23 + 4/15

a03 + 1/15a53 + 2/5a35 + 3/5a15− 4/5a25− 4/25a05− 1/25a55

+λ

{
− 1

25
a00 +

1

5
a20− 1

5
a30 +

1

25
a50 +

1

25
a05− 1

25
a55− 1

5
a25 +

1

5
a35

+a32− a22 +
1

5
a02− 1

5
a52 + a23− a33− 1

5
a03 +

1

5
a53

}
.

From this, we derive two additionnal relations to achieve the symmetry:

γ − δ =
4

3
and δ + λ = 0 ,

from the last relation, the symmetry is already verified for indices 12 and 13. Hence, δ = λ = 0
and thus γ = 4

3 . Now, for these set of indices, we have a unique solution (with no parameter).
As an illustration, we obtain the following diagram for index 21 (with the scaling factor 1

75):

-3 0 5 0 0 -2

0 0

30 -50 0 20

-60 100 0 -40

45 [21] 30

-12 0 20 0 0 -8

Among the monomial of degree 5, the obtained Serendipity family includes u5v and uv5.
Thus, monomials u4v2, u3v3, u2v4 are missing. In order to fix α, the space must be enriched
with one of the previous monomials. For symmetry reasons, the only choice is to include the
monomial u3v3 in the polynomial space.

It is easy, by means of instanciations, to see that

56 × u3v3 = {pc11 + 8pc12 + 27pc13 + 64pc14 + 125pc15}+ 23 {pc21 + 8pc22 + 27pc23 + 64pc24 + 125pc25}

+33 {pc31 + 8pc32 + 27pc33 + 64pc34 + 125pc35}+ 43 {pc41 + 8pc42 + 27pc43 + 64pc44 + 125pc45}

+53 {pc51 + 8pc52 + 27pc53 + 64pc54 + 125pc55} ,

then, following Relation (16), we have (as for pc11)

56 × u3v3 = {pc11 + 125pc15}+ 23 {8pc22 + 27pc23 + 125pc25}

+33 {8pc32 + 27pc33 + 125pc35}+ 43 {125pc45}+ 53 {pc51 + 8pc52 + 27pc53 + 64pc54 + 125pc55} + ... ,
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and in terms of pc11 and omitting the factor, we only have the contributions of

{pc11 + 125pc15}+ 23 {8pc22 + 27pc23 + 125pc25}

+33 {8pc32 + 27pc33 + 125pc35}+ 43 {125pc45}+ 53 {pc51 + 8pc52 + 27pc53 + 64pc54 + 125pc55} ,

which, in terms of the coefficients, reads{
1− 125α11

15

}
+ 23

{
−8α11

22 − 27α11
23 − 125α11

25

}
+33

{
−8α11

32 − 27α11
33 − 125α11

35

}
+43

{
−125α11

45

}
+53

{
−α11

51 − 8α11
52 − 27α11

53 − 64α11
54 − 125α11

55

}
,

now, we replace the coefficients to obtain an equation in parameter α, which results in α = 2
3

and this value is also the right value to cancel all the contributions for the other (similar) indices.

To complete the proof, we check that index 21 has the same property so that, by symmetry,
u3v3 is in the space. To this end, we compute the coefficient

23
{

1− 8α21
22 − 27α21

23 − 125α21
25

}
+33

{
−8α21

32 − 27α21
33 − 125α21

35

}
+43

{
−125α21

45

}
+53

{
−α21

51 − 8α21
52 − 27α21

53 − 64α21
54 − 125α21

55

}
,

where there is no parameter but which is null as expected (so it is for the other (similar) indices).

The update of the diagram for index 11 gives (with the scaling factor 1
45)

-4 9 -8 4 0 -1

0 0

16 -40 20 4

-32 80 -40 -8

36 [11] 9

-16 36 -32 16 0 -4

and we have the previous (unchanged) diagram for index 21. Since the shape functions satisfy
the same relations, we find all the coefficients and, for the type functions, we have the following
table:

p00(u, v) p10(u, v) p20(u, v) p22(u, v)

ω11 -16/45 4/5 -32/45 16/9
ω21 -12/75 0 20/75 100/75
ω31 -8/75 0 0 0
ω41 -4/45 0 16/45 -8/9

ω42 -3/75 0 30/75 -50/75
ω43 -2/75 0 20/75 0

ω44 -1/45 0 4/45 4/9
ω34 -2/75 0 0 0
ω24 -3/75 0 5/75 -50/75
ω14 -4/45 1/5 -8/45 -8/9

ω13 -8/75 2/5 -40/75 0
ω12 -12/75 3/5 -60/75 100/75
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Coefficients for the repartition, ωkl stands for αkl
ij .

Using these coefficients, we have the reduced shape functions fully defined via (16), see
hereafter.

Then the reduced element, seen as a patch reads

M(u, v) =
∑
ij

pij(u, v)Aij ,

where ij denotes the indices of the (4) vertices, the (16) edge nodes and the (4) internal nodes
of the reduced element, i.e., 24 indices. We replace again the pijs by means of the pcijs, then,
with evident notations, we have

M(u, v) =
∑
ij

{
pcij(u, v) +

∑
kl

αkl
ijp

c
kl(u, v)

}
Aij ,

with, for example, α11
ij and α21

ij , the coefficients in the above diagrams. Then, this reads also

M(u, v) =
∑
ij

pcij(u, v)Aij +
∑
ij

∑
kl

αkl
ijAijp

c
kl(u, v) =

∑
ij

pcij(u, v)Aij +
∑
kl

∑
ij

αkl
ijAijp

c
kl(u, v) ,

therefore let
Akl =

∑
ij

αkl
ijAij ,

again with 24 indices, so that the patch is

M(u, v) =
∑
ij

pcij(u, v)Aij ,

but now with 36 indices. In other words, we have invented the nodes A11, A21, ... with which
we can define a complete element fully equivalent to the reduced element. As already seen, a
complete element is equivalent to the Bézier patch∑

i=0,5

∑
j=0,5

B5
i (u)B5

j (v)Pij ,

from which we obtain P11, P21, ....

In practice. The 24-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge A00A50,

P10 =
−77A00 + 300A10 − 300A20 + 200A30 − 75A40 + 12A50

60
,

P20 =
269A00 − 1450A10 + 2950A20 − 2300A30 + 925A40 − 154A50

240
,

P30 =
−154A00 + 925A10 − 2300A20 + 2950A30 − 1450A40 + 269A50

240
,

P40 =
12A00 − 75A10 + 200A20 − 300A30 + 300A40 − 77A50

60
.

Then we compute P11, P21, P31, P41, ..., P12 by solving the corresponding system. Then, just use
Relation (15) to have the control coefficients of the jacobian.
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The shape functions. With the values of αkl
ij and using Relation (16), it is easy to obtain the

explicit expression of the shape functions. Indeed, only four of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)
to express pc00(u, v), pc10(u, v), pc20(u, v), pc22(u, v) and pc11(u, v), pc21(u, v), ..., pc12(u, v) and then
compute p00(u, v), p10(u, v) p20(u, v) p22(u, v), the four type functions, we find

1 p00(u, v) = 1
72(v − 1)(u− 1)(72− 750u− 750v + 2625u2 + 1250uv + 2625v2

−3750u3 − 1250u2v − 1250uv2 − 3750v3 + 1875u4 + 1250u2v2 + 1875v4)

2 p10(u, v) = 25
24u(2− 5u)(3− 5u)(4− 5u)(1− u)(1− v)

3 p20(u, v) = 25
36u(5u− 3)(u− 1)(v − 1)(12− 75u+ 25v + 75u2 − 25v2)

21 p22(u, v) = 625
36 uv(5v − 3)(v − 1)(5u− 3)(u− 1)

Type shape functions of one serendipity 24-node quad of degree 5.

Observe how simple is p10 and the formal beauty of the three other functions. By symmetry
(u→ 1− u, (u, v)→ (v, u), etc.), the full list is obtained, as examples, we have:

p30(u, v) = p20(1− u, v) , p01(u, v) = p10(v, u) ,

p51(u, v) = p01(1− u, v) , p15(u, v) = p10(u, 1− v) , etc.

This concludes the case of the 24-node quad.

Reduced quads of higher degree? In [1], we find serendipity quads and hexes of arbitrary
order, but, as seen for the previous element, they are not fully symmetric as can be shown in
the following table (for quads only) where we give the dimension of space P d, namely (d+1)(d+2)

2 ,
the dimension of the serendipity space, the number of internal nodes and the number of nodes
to be added to recover a fully symmetric configuration.

d dim(P d) dim(P d) + udv + uvd #nodes +

2 6 8 0 0
3 10 12 0 0
4 15 17 1 0
5 21 23 3 1
6 28 30 6 2
7 36 38 10 2

Dimension of the polynomial spaces, number of internal nodes and number of ”missing” nodes.

Following what we did for the 24-node quad, we think that, formally speaking, the same
story applies to higher order. Nevertheless, say at order 6, the constants that can be found
involve a polynomial of degree 2 (due to the D4 derivatives) and thus, for a given sub-template,
one needs to consider a combination of 3 consecutive values. To achieve a full symmetry, we
think that we can invent the necessary nodes in the same way (by means of a LU factorization).

As a consequence, and, a fortiori, for higher order elements, the construction seems to be
fastidious and we stop here our discussion.
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6 Tridimensional complete Lagrange elements

Formulae (10) and (11) extend to (complete) hexahedra and (complete) simplices and give the
shape functions.

6.1 Complete Lagrange tetrahedra or hexahedra of degree d

Tetrahedra of degree d. We use the definition (12) to discuss the case of a degree d tetra-
hedron, so we have

Θ = θ(u, v, w, t) =
∑

i+j+k+l=d

Bd
ijkl(u, v, w, t)Pijkl , (45)

where the Pijkls are the control points. We repeat what we did for the triangle of degree d to
obtain the jacobian polynomial, we find

J (u, v, w, t) =
∑

I+J+K+L=3(d−1)

Bq
IJKL(u, v, w, t)NIJKL ,

where q = 3(d− 1) and the coefficients NIJKL are

NIJKL = d3
∑

|i|=I,|j|=J,|k|=K,|l|=L

Cd−1
i1j1k1l1

Cd−1
i2j2k2l2

Cd−1
i3j2k3l3

Cq
IJKL

∣∣∆1000
i1+1,j1k1l1 ∆0100

i2+1,j2k2l2 ∆0010
i3+1,j3k3l3

∣∣ ,
(46)

where |i| = i1 + i2 + i3, ... and with i1 + j1 + k1 + l1 = i2 + j2 + k2 + l2 = i3 + j3 + k3 + l3 = d− 1
and with the following ∆:

∆1000
ijkl =

−−−−−−−−−−−→
PijklPi−1,j+1,k,l, ∆0010

ijkl =
−−−−−−−−−−→
PijklPi−1,j,k+1,l and ∆0010

ijkl =
−−−−−−−−−−→
PijklPi−1,j,k,l+1 .

The jacobian is a polynomial of degree q = 3(d−1), the number of control coefficients is (q+1)(q+2)
2

and the number of determinants involved in these coefficients is (d×(d+1)
2 + (d−1)d

2 + ...)3.

Hexahedra of degree d. We use the definition (14) to discuss the case of a degree d hexa-
hedron, so we have

θ(u, v, w) =
∑
i=0,d

∑
j=0,d

∑
k=0,d

Bd
i (u)Bd

j (v)Bd
k(w)Pijk , (47)

and, the jacobian polynomial has the form

J (u, v, w) =
∑
I=0,q

∑
J=0,q

∑
K=0,q

Bq
I (u)Bq

J(v)Bq
K(w)NIJK ,

where q = 3d− 1 and the coefficient NIJKs are

NIJK = d3
∑
|i|=I

∑
|j|=J

∑
|k|=K

Cd−1
i1

Cd
i2
Cd
i3

Cq
I

Cd
j1
Cd−1
j2

Cd
j3

Cq
J

Cd
k1
Cd
k2
Cd−1
k3

Cq
K

|∆100
i1,j1,k1 ∆010

i2,j2,k2 ∆001
i3,j3,k3 |

(48)

with ∆100
ijk =

−−−−−−−→
PijkPi+1,jk ,∆

010
ijk =

−−−−−−−→
PijkPi,j+1,k and ∆001

ijk =
−−−−−−−→
PijkPij,k+1 ,

where |i| = i1 + i2 + i3, ... and with i1 = 0, d− 1, i2 = 0, d, i3 = 0, d, j1 = 0, d, j2 = 0, d− 1, j3 =
0, d, k1 = 0, d, k2 = 0, d, k3 = 0, d − 1. The jacobian is a polynomial of degree q × q × q =
(3d− 1)× (3d− 1)× (3d− 1) and the number of control coefficients is (q + 1)3.
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7 Tridimensional incomplete Lagrange elements

First of all, formulae (16) and (17) extend to hexahedra and simplices and show how the re-
duced shape functions are related to the complete shape functions. Then, some of the complete
Lagrange elements have their related incomplete elements. The method to constructing those
reduced elements is basically the same, e.g. by means of Taylor expansions while taking into
account what polynomial space we like to have.

7.1 Tetrahedra

The order 3 tetrahedron. The complete element has 20 nodes with one node per face and
no node inside the volume. We propose to apply to the faces what we did for the order 3 triangle.
In other words, we apply Relation (18), to the faces. For the triangle, we had

12q(Â111) + 2
∑
ijk∈V

q(Âijk)− 3
∑
ijk∈E

q(Âijk) = 0 ,

and this leads to four relations, for instance for face t = 0, we simply have (with evident
notations)

12q(Â1110) + 2
∑

ijkl∈Vt=0

q(Âijk0)− 3
∑

ijkl∈Et=0

q(Âijk0) = 0 ,

and similar relations for the other faces where the template is centered at Â1101, Â1011, Â0111 for
the faces w = 0, v = 0 and u = 0, respectively. Therefore we have a system of 4 equations.

Using the extension of Relation (17), we look for reduced functions, polynomials like

pijkl(u, v, w, t) = pcijkl(u, v, w, t)+αp
c
1110(u, v, w, t)+βp

c
1101(u, v, w, t)+γp

c
1011(u, v, w, t)+δp

c
0111(u, v, w, t) .

Due to the symmetry, there is only two type shape functions, p3000(u, v, w, t) and p2100(u, v, w, t).
In the four above equations, we replace the generic function q by p3000, then we immediately
have α = β = γ = −1

6 and δ = 0, the face opposite to Â3000 has no contribution to p3000.

To define p2100, we use the same method and we find α = β = 1
4 and γ = δ = 0, the two

faces opposite to edge Â3000Â0300 have no contribution to p2100.

The shape functions. With the values of α, β, γ and δ and using Relation (17), extended to
three dimensions, it is easy to obtain the explicit expression of the shape functions. Indeed, only
two of them must be explicited since, for symmetry reasons, the other functions are evident to
obtain. Therefore, we use a relation like Relation (11) to express pc3000(u, v, w, t), p

c
2100(u, v, w, t)

and pc1110(u, v, w, t), p
c
1110(u, v, w, t), p

c
1110(u, v, w, t), p

c
1110(u, v, w, t), and then compute p3000(u, v, w, t)

and p2100(u, v, w, t), the two type functions, we find

p3000(u, v, w, t) =
1

2
u(2u2 − 5uv − 5uw − 5ut+ 2v2 − 5vw − 5vt+ 2w2 − 5wt+ 2t2) ,

or p3000(x, y, z) =
1

2
(1− x− y − z)(2− 9x− 9y − 9z + 9x2 + 9xy + 9xz + 9y2 + 9yz + 9z2) ,

and p2100(u, v, w, t) =
9

4
uv(4u− 2v + w + t) ,

or p2100(x, y, z) =
9

4
(1− x− y − z)x(4− 6x− 3y − 3z) .

By symmetry (x→ 1− x, (u, v, w, t)→ (v, u, w, t), etc., in x or u), we have the full list.
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1 p3000(x, y, z) = 9
2(1− x− y − z)(29 − x− y − z + xy + xz + yz + x2 + y2 + z2)

4 p2100(x, y, z) = 9
4(1− x− y − z)x(4− 6x− 3y − 3z)

Type shape functions of the 16-node tetrahedron of degree 3.

In practice. The 16-node tetrahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the triangle of degree 3) and then we compute
P1110, P1101, P1011, P0111 using, by face, the formula of the triangle. Then, with these points, the
element reads

θ(u, v, w, t) =
∑

i+j+k+l=3

B3
ijkl(u, v, w, t)Pijkl ,

and it is just required to use Relation (46) to have the control coefficients of the jacobian.

This concludes the case of the 16-node tetrahedron.

The order 4 tetrahedron. The complete element has 35 nodes with three nodes per face
and one node inside the volume. We propose to apply to the faces what we did for the order
4 triangle. In other words, we will apply Relations (22) to the faces of the element to deal
with their three nodes and to account for the volume node, we will apply Relation (26) to four
adequately defined pseudo-faces. Therefore, using Relations (22). e.g.,

15q(Â211)− 15q(Â121) = −2q(Â400) + 2q(Â040)

−5q(Â130)− 2q(Â103) + 5q(Â310) + 3q(Â202) + 3q(Â301) + 2q(Â013)− 3q(Â031)− 3q(Â022) ,

and
15q(Â211)− 15q(Â112) = −2q(Â400) + 2q(Â004)

−2q(Â130)− 5q(Â103) + 3q(Â310) + 3q(Â220) + 5q(Â301) + 2q(Â031)− 3q(Â022)− 3q(Â013) ,

we mechanically obtain, for the face t = 0, the two following equations

(R1) 15q(Â2110)− 15q(Â1210) = −2q(Â4000) + 2q(Â0400)

−5q(Â1300)−2q(Â1030) + 5q(Â3100) + 3q(Â2020) + 3q(Â3010) + 2q(Â0130)−3q(Â0310)−3q(Â0220) ,

and
(R2) 15q(Â2110)− 15q(Â1120) = −2q(Â4000) + 2q(Â0040)

−2q(Â1300)−5q(Â1030) + 3q(Â3100) + 3q(Â2200) + 5q(Â3010) + 2q(Â0310)−3q(Â0220)−3q(Â0130) ,

which correspond to the following template:

0040

1030 0130

2020 1120 0220

3010 2110 1210 0310

4000 3100 2200 1300 0400 (t=0)
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The same applies (after a permutation in the indices to account for the templates in hand) to
faces w = 0, v = 0 and u = 0, resulting in 8 equations.

To complete this system, we have to find the equations giving the relations between the
volume node, Â1111, and the nodes in the boundary of the element. To this end, we consider the
pseudo-faces defined by the planes t = 1

4 , w = 1
4 , v = 1

4 and u = 1
4 and we use Relation (26) in

the corresponding templates. As an example, the template for t = 1
4 is depicted in the following

diagram:

0031

1021 0121

(t=1/4)

2011 1111 0211

3001 2101 1201 0301

and the relation

C211 = 12 q(Â211) + 2
∑

ijk∈V211

q(Âijk) − 3
∑

ijk∈E211

q(Âijk) ,

reads for the above template (with evident notations)

C1111−t = 12q(A1111) + 2q(A3001) + 2q(A0301) + 2q(A0031)

−3q(A2101)− 3q(A1201)− 3q(A0211)− 3q(A0121)− 3q(A1021)− 3q(A2011) .

Similarly, we obtain 3 more equations related to the three other pseudo-faces. To summarize,
we have 12 equations, meaning that we have to consider the volume node as a node of the reduced
element, in other words, we have only a chance of canceling the 12 face nodes.

In [19], we give the explicit reading of the 12 × 12 matrix of the system and we see that
the determinant of this matrix is null. To better understand this point, using the extension of
Relation (17), we look for reduced functions, polynomials like

pijkl(u, v, w, t) = pcijkl(u, v, w, t) +
∑
mnop

αmnop
ijkl pcmnop(u, v, w, t) ,

we fixe index ijkl =4000 and we write the 12 corresponding equations. Omitting index mnop, we
find the following relations:

(R1) 15α2110 − 15α1210 = −2

(R2) 15α2110 − 15α1120 = −2

(R3) 15α2101 − 15α1201 = −2

(R4) 15α2101 − 15α1102 = −2

(R5) 15α2011 − 15α1021 = −2

(R6) 15α2011 − 15α1012 = −2

(R7) 15α0211 − 15α0121 = 0
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(R8) 15α0211 − 15α0112 = 0

(R9) − 3α2101 − 3α1201 − 3α0211 − 3α0121 − 3α1021 − 3α2011 + 3α1210 + 3α1120 − 12α2110 = 2

(R10) − 3α2110 − 3α1210 − 3α0211 − 3α0112 − 3α1012 − 3α2011 + 3α1201 + 3α1102 − 12α2101 = 2

(R11) − 3α2110 − 3α1120 − 3α0121 − 3α0112 − 3α1102 − 3α2101 + 3α1021 + 3α1012 − 12α2011 = 2

(R12) − 3α1210 − 3α1120 − 3α1021 − 3α1012 − 3α1102 − 3α1201 + 3α0121 + 3α0112 − 12α0211 = 0 .

These relations imply that

(R9) α1102 + α0112 + α1012 + α1120 =
1

15
,

together with
(R12) α1120 + α1012 + α1102 + α0112 = 0 ,

which is impossible. As a conclusion, we don’t find a solution, using our method (Taylor), there
is no way to constructing a reduced order 4 tetrahedron covering space P 3. This negative result
is not a surprise since we had the same conclusion for the order 4 triangle.

As we did for the triangle, we limit our quest so as to only cover the space P 2. The conclusion
is similar, we don’t find a solution since we have one inconsistency with the ”central” node. The
order 4 tetrahedron is too rigid.

Therefore, we stop here our study about tetrahedra while the question to know if this negative
issue holds for higher order tetrahedra remains.

7.2 Hexahedra

The idea is the same, we extend to the faces and, if needed, to some pseudo-faces, the relations
obtained for the quadrilaterals.

The order 2 hexahedron. The complete element is a 27-node hex with one node per face
and one node in the volume. We consider Relation (30), e.g.,

4q(Â11) +
∑
ij∈V

q(Âij)− 2
∑
ij∈E

q(Âij) = 0 ,

and we write this relation for the six faces of the element. The face w = 0 is depicted in the
following diagram

020 120 220

010 110 210

000 100 200

and we have a first equation

4q(Â110)+
{
q(Â000) + q(Â200) + q(Â220) + q(Â020)

}
−2
{
q(Â100) + q(Â210) + q(Â120) + q(Â010)

}
= 0 .

By applying the same relation to the five other faces (and the appropriate templates in terms
of indices), we obtain five more equations. Now we provide a relation between the central node
(Â111) and the nodes on the boundary of the element by considering the following template
corresponding to the plane u = 1

2 and the pseudo-face so defined
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102 112 122

101 111 121

100 110 120

and then we add a relation involving the central node

4q(Â111)+
{
q(Â100) + q(Â102) + q(Â120) + q(Â122)

}
−2
{
q(Â101) + q(Â121) + q(Â110) + q(Â112)

}
= 0 ,

(49)
and those 7 relations define the serendipity property of the element.

Then we write the values at the face nodes in this last relation by their expressions in the
their own face, it results equation

4q(Â111) +
∑
ijk∈V

q(Âijk)−
∑
ijk∈E

q(Âijk) = 0 , (50)

which links the central value with the value at the vertices and the edge nodes.

The reduced shape functions follow the form of Relation (16), namely we have

pijk(u, v, w) = pcijk(u, v, w) +
∑
lmn

αlmn
ijk p

c
lmn(u, v, w) ,

and these functions satisfy all the above equations. For symmetry reasons, there is only two
type functions so we fix ijk = 000 and ijk = 100 to obtain the coefficients of repartition from
the initial system. The solution is

α110
000 = α101

000 = α011
000 = α111

000 = −1

4
,

and α110
100 = α101

100 =
1

2
and α111

100 =
1

4
,

one can observe that the ”corner” shape function only depends on the complete shape functions
of its three incident faces and the central one. For an edge shape function, only the central
function and the functions of the two incident faces contribute.

With the values of the coefficients and following the generic form of the functions, we have

1 q000(u, v, w) = (1− u)(1− v)(1− w)(1− 2u− 2v − 2w)
9 q100(u, v, w) = 4u(1− u)(1− v)(1− w)

Type shape functions of the 20-node hexahedron of degree 2.

In practice. The 20-node hexahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the quad of degree 2) and then we compute the
control points of the face using, by face, the formula of the quadrilateral. Then, with these
points, the element reads

θ(u, v, w) =
∑
i=0,2

∑
j=0,2

∑
k=0,2

B2
i (u)B2

j (v)B2
k(w)Pijk ,
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from which we compute the last control point, P111, we have

P111 = −5

8

∑
ijk∈V

Pijk +
3

4

∑
ijk∈E

Pijk −
1

2

∑
ijk∈F

Pijk ,

i.e., P111 is written in terms of the vertices, the control points of the edges (other than the
vertices) and the control points of the faces (other than all the previous). To end, it is just
required to use Relation (48) to have the control coefficients of the jacobian.

About the polynomial space of the reduced element. The diagram of the polynomial
space is

1

u v w

u2 uv uw v2 vw w2

u2v u2w uvw uv2 v2w uw2 vw2

u2vw uv2w uvw2

where we have space P 2, the monomials of degree d + 1 = 3 with at least one variable linearly
involved and the the monomials of degree d+2 = 4 with two variables linearly involved, therefore
20 monomials.

This concludes the case of the 20-node hexahedron (note that this element can be defined
by means of a transfinite interpolation, [23]).

The order 3 hexahedron. The complete element is a 64-node hex with four nodes per face
and eight nodes in the volume. The number of nodes we want to cancel is 32 (6× 4 + 8 = 32).
We apply to the nodes of the faces what we did for the quadrilateral of degree 3 where we have 4
equations, therefore this lead to 24 equations. To have 8 equations more we consider two planes
(for instance u = 1

3 and u = 2
3) and consider the corresponding templates. As a result we have

32 equations for 32 unknowns. We proceed these equations as we did in the previous element
so as to find the links between the volume values (of a generic function) and the values on the
boundary (vertices, edge nodes and face nodes) of the elements.

The reduced shape functions follow the form of Relation (16), namely we have

pijk(u, v, w) = pcijk(u, v, w) +
∑
lmn

αlmn
ijk p

c
lmn(u, v, w) ,

and these functions satisfy all the above equations. For symmetry reasons, there is also only
two type functions so we fix ijk = 000 and ijk = 100 to obtain the coefficients of repartition
from the initial system. The solution, [20], is given by means of a table and some diagrams. The
coefficients for q000 are listed in the following table (where we omit the index 000):

α110 = −4
9 α210 = −2

9 α120 = −2
9 α220 = −1

9
α011 = −4

9 α021 = −2
9 α012 = −2

9 α022 = −1
9

α101 = −4
9 α201 = −2

9 α102 = −2
9 α202 = −1

9
α122 = − 4

27 α222 = − 2
27 α121 = − 8

27 α221 = − 4
27

α112 = − 8
27 α212 = − 4

27 α111 = −16
27 α211 = − 8

27

As for the nodes in the plane w = 0, the coefficients are
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. . . .

. 120 220 . -2/9 -1/9

. 110 210 . -4/9 -2/9

[000] . . . [000]

in the plane w = 1
3 , we have

. . . .

021 121 221 . -2/9 -8/27 -4/27

011 111 211 . -4/9 -16/27 -8/27

[000] 101 201 . [000] -4/9 -2/9

and in the plane w = 2
3 , we have

. . . .

022 122 222 . -1/9 -4/27 -2/27

012 112 212 . -2/9 -8/27 -4/27

[000] 102 202 . [000] -2/9 -1/9

one can observe the perfect symmetry and the mechanism of construction of these coefficients
and see that all the nodes contributing to q000 are located on the planes w = 0, w = 1

3 and
w = 2

3 .

The coefficients for q100 are depicted in the following diagram:

. . . .

102 112 122 . 1/3 2/9 1/9

101 111 121 . 2/3 4/9 2/9

[100] 110 120 . [100] 2/3 1/3

again, one can observe the perfect symmetry and the mechanism of construction of these coef-
ficients and see that all the nodes contributing to q100 are located on the plane u = 1

3 .

With the values of the coefficients and following the generic form of the functions, we have

1 q000(u, v, w) = 9
2(1− u)(1− v)(1− w)( 2

9 − v − w − u+ u2 + v2 + w2 )
9 q100(u, v, w) = 9

2u(1− u)(2− 3u)(1− v)(1− w)

Type shape functions of the 32-node hexahedron of degree 3.
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In practice. The 32-node hexahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the quad of degree 3) and then we compute the
control points of the face using, by face, the formula of the quadrilateral. Then, with these
points, the element reads

θ(u, v, w) =
∑
i=0,3

∑
j=0,3

∑
k=0,3

B3
i (u)B3

j (v)B3
k(w)Pijk ,

from which we compute the internal control points. To this end, we first define the internal
nodes and then we solve the system

A111 = θ(
1

3
,
1

3
,
1

3
)

...

A222 = θ(
2

3
,
2

3
,
2

3
) ,

from which we compute P111, ..., P222. To end, it is just required to use Relation (48) to have
the control coefficients of the jacobian.

About the polynomial space of the reduced element. The diagram of the polynomial
space is

1

u v w

u2 uv uw v2 vw w2

u3 u2v u2w uv2 uvw uw2 v3 v2w vw2 vw3

u3v u3w u2vw uv2w uvw2 uv3 uw3 v3w uw3

u3vw uv3w uvw3

where we have space P 3, the monomials of degree d + 1 = 4 with at least one variable linearly
involved and the the monomials of degree d+2 = 5 with two variables linearly involved, therefore
32 monomials.

This concludes the case of the 32-node hexahedron.

Higher order hexahedra? The complete element of degree 4 is a 125-node hex with 9 nodes
per face and 27 nodes in the volume. After [1], the serendipity hex has 50 nodes, therefore the
number of nodes in the volume is 50 − 8 − 12 × 3 − 6 × 1 = 0, so that we have no problem
with the symmetry in the volume. Now, the number of nodes to cancel is 6 × 9 − 6 + 27 = 75
because one node per face is retained (as for the quad of degree 4). Therefore we need to find 75
equations. The equations are obtained by using Taylor expansions in a number of planes and in
specific for those related to the 6 faces (and we return to the case of the bidimensional quad).

This seems to be rather technical and tedious so we don’t like to continue the story for higher
degrees, we just like to give some remarks about degrees greater or equal to 5.

The complete element of degree 5 is a 216-node hex with 16 nodes per face and 64 nodes in
the volume. Again after [1], the serendipity hex has 74 nodes, therefore the number of nodes in
the volume is 74 − 8 − 12 × 4 − 6 × 3 = 0, so that we have no problem with the symmetry in
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the volume. Now, the number of nodes to cancel is 6 × 16 − 6 × 3 + 64 = 142 meaning that 3
nodes per face are retained and we need to find 142 equations, or, if not, to retains a number
of nodes inside the volume. Nevertheless, as pointed out before in this paper and also in [15], if
one keeps the nodes distinct, it is not possible to arrange them in a completely symmetric way
when d ≥ 5. This is why we proposed the quad of degree 5 previously discussed where we have
4 nodes per face, so that i) a symmetric arrangement is possible and ii) there is no problem of
conformity from one element to its six neighbors (by face) when considering the case of hexes.
After this trick, we thing that it is possible to consider such elements as the others by using
Taylor expansions.

In conclusion, we were not capable (or we have not enough courage) to explicitly construct
reduced hexes with a degree greater than 3 and this concludes our discussion about the hexes
and gives room for further works.

7.3 Other elements

Among the elements in three dimensions, we also have the prisms (pentahedra) and the pyramids.
The complete prism of degree 2 has 18 nodes including one node per quadrilateral face. The
face are quad of degree 2 so that the ”central” node can be cancelled and we obtain a 15-node
prism, see [17]. For the degree 3, the 40-node prism, one can expect that the 12 nodes on the
quadrilateral faces (3 × 4) and the 2 nodes on the triangular faces (2 × 1) together with the 2
nodes in the volume can be cancelled.

Pyramidal elements are, somehow, controversial elements, for which we have various (and
possibly antagonist) definitions. In [18], we proposed a definition of a pyramid as being a
degenerated form of an hexahedron. With such a definition, one finds the counterpart of the
serendipity hexa of degree 2, a 13-node pyramid.

8 Conclusion

In this paper, we gave a detailed discussion about the construction of some reduced elements
and, this being done and given a reduced element in a mesh, we discuss the conditions that give
guarantees about its geometric validity. As seen, the main idea is, given such an element in a
mesh, to return to a complete element equivalent to this reduced one and then to apply what
we did previously for complete elements. It turns out that this leads to properly invent the
”missing” nodes and the ”missing” control points.

Incomplete or reduced elements have a reduced number of nodes (typically the edge nodes are
those of the complete elements while the number of internal nodes is zero or smaller than that in
the complete element). The polynomial space is also of a smaller dimension as compared with the
complete space. These two facts make attractive the reduced elements since the corresponding
computational cost is, in turn, widely reduced. The following table gives some examples of the
reduction obtained by reporting the gain in terms of the number of nodes.

d 2 3 3 4 4 5 2 3 3 4

geometry quad tria quad tria quad quad hexa tetra hexa hexa

#nodes 9 10 16 15 25 36 27 20 64 125

red.#nodes 8 9 12 12 17 24 20 17 32 50

gain 1 1 4 3 8 12 7 3 32 75

% 11% 10% 25% 20% 32% 33% 26% 15% 50% 60%
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Reduction in the number of nodes for the reduced elements.

As a matter of fact, our study reveals a number of points or open questions. Indeed, we
don’t find any triangle of degree greater than 4, we meet a difficulty with the quads of degree
greater than 4 where the complete symmetry in the nodes arrangement was an issue. In three
dimension, we don’t find any tetrahedron of degree greater than 3 and we were not capable to
explicitly construct reduced hexes with a degree greater than 3, such a task being, at least, too
technical.

The elements we find are serendipity elements as far as we consider the quads and the
hexes. For the few triangles and the tetrahedron discussed in this paper, the term reduced (or
incomplete) seems to be more appropriate to qualify such elements.

As regards the geometric validity (positive jacobians) of the reduced elements, we showed
that the computational effort could be costly since a large number of determinants must be
evaluated apart if one considers straight-sided elements.

To end, we would like to thank D.L. Arnold and M.S. Floater with whom we had a number
of fruitful discussions.
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Paris, 2007.

[9] P.G. Ciarlet, The Finite Element Method, North-Holland, 1978.

[10] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis,
vol II, Finite Element methods (Part 1), P.G. Ciarlet and J.L. Lions Eds, North-Holland, 17-352,
1991.

[11] P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite Interplation in Rn with Appli-
cations to Finite Element Methods, Arch. Rat. Mech. Anal.,47, 177, 1972.

[12] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis. Toward Integration of
CAD and FEA, Wiley, 2009.

55



[13] S. Dey, R.M. O’Bara and M.S. Shephard, Curvilinear mesh generation in 3D, 8th Inter. Mesh-
ing Roundtable, pp. 407-417, 1999.

[14] G. Farin, Curves and surfaces for CAGD. A practical guide. 5th edition, Academic Press, 2002.

[15] M.S. Floater and A. Gillette, Nodal bases for the serendipity family of finite elements, personal
communication, 2014.

[16] P.J. Frey and P.L. George, Mesh Generation, 2nd edition, ISTE and Wiley, 2008.
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