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Abstract

Finite elements of degree two or more are needed to solve various P.D.E. problems. This
paper discusses a method to validate such meshes for the case of the serendipity Lagrange
elements of various degree. The first section of this paper comes back to Bézier curve and
Bézier patches of arbitrary degree. The way in which a Bézier patch and a complete finite
element are related is recalled. The construction of serendipity or reduced Lagrange finite
elements of various degree is discussed, including simplices (triangle and tetrahedron), quads,
prisms (pentahedron), pyramids and hexes. The validity condition, the positivity of the
jacobian, exhibited for the classical (complete) elements is used to validate their serendipity
counterparts after having invented a complete element equivalent to the reduced element
under analyse.

1 Introduction

High order (p-version) finite elements are employed to accurately solve a number of P.D.E. with
a good rate of convergence, see [2], [3], [9], [10], [27]. The order impacts two different aspects, one
concerning the geometry, the other the finite element approximation. These two aspects may
be combined or not. For instance, a high order element in the case of a straight-sided geometry
does not lead to any difficulty at the time the geometry is considered, while even a not too high
order element where the geometry is a curved geometry may lead to some tedious questions,
see the pioneering references, [29], [28], [30] and [13] and some more recent references, including
[7] for tetrahedral elements, [21] for quadrilaterals and [24] for triangles. In this paper, we are
only concerned with the geometric validity of high order serendipity meshes of planar or volume
domains with curved boundaries but we are not directly interested in the finite element aspect,
e.g. solution methods and mesh quality. As regards the validity of a given mesh, a common
idea is that it is sufficient to locate the nodes on the curved edges without giving any explicit
attention to the positivity of the resulting jacobian. Another idea and one that is advocated in
a number of papers is to evaluate the jacobian on a sample of points (for example Gauss points)
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but this is only a necessary condition. Actually, this works well in most cases but only if the
boundary is not too bended.

The idea is to return to the case of the classical Lagrange elements where we have sufficient
conditions for the geometric validity. To this end, given a serendipity element, it is required to
invent a complete element which is equivalent to the reduced element.

Before going to this question, we first discuss about various methods suitable for the effective
construction of the serendipity or reduced elements, since there is a shortage of literature about
this point (apart for the 8-node quad and the 9-node triangle).

Nomenclature
e K the reference element, K the current element, F'x the mapping from K to K, Di, Dij, ---, & shape
function, d the degree of the finite element, J the jacobian of K, ¢ the degree of this jacobian,
o A, A; (Aij, Aijk, Aijit), a node of K and its image by F,
e u,v,w,t or Z,9, 2, the parameters living in the parametric space, e.g. K,

e [ and 7, ¥ and o, © and 6, resp. a curve and its expression, a bidimensional patch and its
expression, a tridimensional patch and its expression,

o Py (Pijk, Pijr1) a control point, N;; (Nyjk, Nijri) a (scalar) control value,

° Bf(u) the Bernstein polynomial of degree d for a system of natural coordinates, ij (u,v), ijk(u, VW), ey
the Bernstein polynomial of degree d for a system of barycentric coordinates, C¢, the binomial co-
efficient,

[] and |.|, a matrix and a determinant.

For a further usage, the first three sections recall some basics about Bézier patches (Section 2)
and usual (complete) Lagrange finite elements (Sections 3 and 4).

2 Bernstein polynomials, Bézier curves and Bézier patches

Following [5] and [14], a Bézier curve (the edges of the elements) of degree d is defined by means
of d+1 control points and the Bernstein basis. More precisely, let P; € R? or R? be those points,
the curve I' reads

T'= qy(w) =Y Biu)Pwithue[0,1] p, (1)
i=0,d

and, using a system of barycentric coordinates, the same reads

' =< y(u,v) = Z ng(u,v)Pij,Withu—l—vzl . (2)
i+j=d

In the above equations, the Bernstein polynomials respectively read as
Bi(u) = Cifu'(1 = u)®™" = ————=u' (1 —u) ", (3)

and
Bl (u,v) = CZ i = L id withi 4 j = d (4)
ij\U, V) = L ;uv —i!j!uv withet+ 7 =d.



and so on.

This abstract reading of vy(u,v) or vy(u) extends to tensor-product patches, for instance in
two dimensions, and for the degree d x d, we have

o(uv) = > > BYu)Bl(v) Py, (5)

i=0,d j=0,d
and the patch reads as
Y = {o(u,v)with (u,v) € [0,1] x [0,1]} , (6)

which is an element by itself or a face element in three dimensions. This extends to tridimensional
tensor-product patches (e.g. by defining 0(u, v, w), O, ... accordingly). Such definitions will be
used to define quadrilaterals, hexes and quadrilateral faces (in the case of a prism or a pyramid).

As for simplices or triangular faces, it is much more convenient to use the barycentric form
of the Bézier setting, e.g

Y = qo(u,v,w)withu +v+w =1, whereo(u,v,w) = Z ngk(u.v,w) Pk ¢+ (7)
i+j+k=d

for a triangle or a triangular face and

O = ¢ O(u,v,w,t)withu+v+w+t=1and 0(u,v,w,t) = Z ijkl(u,v,w,t) Pk ¢
itjthti=d
(8)

for a tet patch.

3 Bézier form and finite element form of a complete element

This section briefly recalls the basics of what a finite element is and shows that complete'
Lagrange elements can be written in terms of a Bézier form. To do this, we follow [9] and more
precisely [10], using the same notations.

Let K be a geometric element (triangle, quad, tet, ...), a Lagrange finite element associated
with K is defined by the triple [K, P, Nodes| where K is the element, P is a space of polynomials
and Nodes is a set of nodes. Actually, K is constructed as the image of a reference element K,

equipped with a set of reference nodes, by means of a mapping Fk, e.g., K = Fg(K) and, in turn,

Fy is defined by means of the polynomials in space P and we have Fx(A) = Z pi(A)A;
i=0,n—1

where p; is a polynomial, n is the number of such polynomials (e.g. the dimension of space P),

A; is the node i of K and A is the value of the parameters (e.g., for instance, (u,v) or (&,7))

where F is evaluated. Therefore, if we consider K as a patch (such as ¥ in the previous section)

we have (with evident notations)

K = { M(u,v)with (u,v) € K where M (u,v) = Z pi(u,v)A; 3, 9)
i=0,n—1

Yincomplete element can also be written in this way but it is more subtle.



(1 —u)?Ag 4 2u(l —u)

in other words, the finite element is defined by means of shape functions and nodes.
Let us consider now a Bézier form like (here is the case of a quadrilateral patch)

=2 2 BlwBj()Py,

1=0,d j=0,d

where d is the degree of space P and P;; is a set of control points, i.e., a patch defined by means
of Bernstein polynomials and control points.

As a matter of fact, for a complete element, space P is complete so that it can be expressed
both in terms of the above p;(u,v) and the Bernstein polynomials. In other words, we have
(with appropriate notations)

>, pwvdi=) > Biw
1=0,n—1 1=0,d j=0,d

As a consequence the A;s can be written in terms of the Pj;s and wvice versa and the p;s are
linear combinations of the Bfl and vice versa.

To simply illustrate this point, we return to the simple case of a Bézier curve of degree 2. It
reads

> Bi(u (1 —u)%Py + 2u(l — u) P, + u?Py,
1=0,2
let us define Ao = Po,A1 = Wand/ﬁ = PQ, then P(] = AQ,Pl = Wandlﬁ =

Ao and, replacing the P;s in the above relation, we have

—Ag — Ax + 444

5 +u?dy = (1—u)(1—2u)Ag +4u(l —u)A; +u(2u —1) Ay,

which is the classical Lagrange form of the curve. This mechanism applies whatever the degree
of the curve and also applies for the patches themselves. The main interest is then to replace the
finite elements by their equivalent Bézier setting, making simpler and systematic the calculation
and the analysis of their jacobian polynomials.

4 Computing and evaluating the jacobian of a complete element

First of all, we introduce the control points associated with a given element K (formulae allows
for this in the case K is defined by its nodes). Then, we write the finite element in its Bézier
setting and we express its jacobian. This polynomial being a product of Bernstein polynomials
(derivatives are multiplied one each other) is, itself, a Bézier form. Therefore we have immedi-
ately a sufficient condition of positiveness: the coefficients of the polynomial must be strictly
positive in the case of an interpolant coefficient and non negative if not.

4.1 Complete Lagrange triangle or quad of degree d

The shape functions for Lagrange triangles together with for Lagrange quads can be written
using a generic formulation. Let

(=1

pi(u) = Wﬂl 011 — du),



then, the shape function with index ;; for a quad of degree d x d simply reads

pij(u,v) = ¢i(u)d;(v) . (10)

The generic expression for a triangle of degree d involves using the system of barycentric coor-
dinates. Let

1.
ou(u) = STZh(du 1),

then, the shape function with index ;; for a triangle of degree d simply reads
Pijk(u,v,w) = ¢i(u)d;(v)dr(w) . (11)
Triangle of degree d. The finite element (as being complete) is written in a Bézier form as

Y= U(U,U,U)) = Z Bidjk;(u7vvw)-PZ‘jk) (12)
i+j+h=d

where the P;js are the control points. The jacobian polynomial reads

j(u,’u,w) = Z B}]JK(’U/,U,U])N[JK,
I+J+K=2(d-1)

where ¢ = 2(d — 1) and the coefficients Ny are

d—1 d—1
2 i171k1 " i2j2k2 100
Npk =d § : o] |A11+1 J1k1 AZ2+17J2k2 ) (13)
irtiz=Ij1+ja=J k1 +ka=K IJK

with i1 +j1 + ki =io+jo+ ko =d — 1, C’jk a coefficient (as previously defined) and with the
following A:

P
100 010
Az]k = zysz 1,j+1,k and Azgk = lePl 1.5,k+1 -

The jacobian is a polynomial of degree ¢ = 2(d — 1), the number of control coefficients is

W which rapidly increases with ¢ or d as it is for the number of terms (e.g., (%)2)

to be computed (some coefficients reduce to one term while others are the summation of a number
of such terms). The geometry of the observed element is valid if the ”corner” coefficients are
strictly positive while the others are non negative.

Quad of degree d. The finite element (as being complete) is written in a Bézier form as
o(u,v) = Y > Blu)Bf(v) Py, (14)
i=0,d j=0,d
where the P;;s are the control points. The jacobian polynomial has the form
Jwo) = 3, Y BiwBj(v)Nw,
I1=0,q J=0,q

where ¢ = 2d — 1 and the coefficient Njss are

Cd 1cd Cd Cd 1
Ny =d* >, >, c7 1AL ALl (15)
J

i1+io=1I j1+jo=J




with A} = PPy jand AYS = PP,
and with 1 = 0,d — 1,i2 = 0,d,j1 = 0,d,jo = 0,d — 1 and C’fj the binomial coefficients. The
jacobian is a polynomial of degree ¢ x ¢ = (2d — 1) x (2d — 1), the number of control coefficients
s (¢ + 1)? which rapidly increases with q or d and the number of terms (e.g. determinants) to
be computed (some coefficients reduce to one term while others are the summation of a number
of such8 terms) is d?(d + 1)2. The geometry of the observed element is valid if the ”corner”
coefficients are strictly positive while the others are non negative.

5 Bidimensional incomplete Lagrange elements

Incomplete or reduced elements have a reduced number of nodes (typically the edge nodes are
those of the complete elements while the number of internal nodes is zero or smaller than that
in the complete element). Low degree elements are well documented in the literature, at least
for quad geometries (8-node quad of degree 2) and for the 9-node triangle of degree 3. The
polynomial space is also of a smaller dimension as compared with the complete space.

There are different methods to define reduced elements among which we have the serendipity
elements where space P is rich enough to achieve a good level of precision. One method specifies
space P and, given an adequate number of nodes, constructs the shape functions by solving an
adequate system satisfying the desired properties (basicaly using the Kronecker delta). Another
method makes use of Taylor expansions in order to eliminate the internal nodes. Whatever the
method, the shape functions have a generic expression (such as (10) and (11) for the complete
Lagrange elements). Let us consider the case of a tensor-product complete element and let Dij
be its shape functions, then, for the reduced element, we have

pij(uvv) ng u,v +Zaf]lpil u, U (16)

where indices ¢j correspond to the edge2 nodes and indices kl are those related to the internal®
nodes of the complete element and a i lis a coefficient (of repartition, how P, contributes to p;;).
For reduced simplices, we have a similar generic expression

pz_]k’(uv v, w) = pf]k(”’ v, w) + Z aigrli:nplmn(u U, ’LU) (17)

Ilmn

In the rest of the paper, we give a detailed discussion about various methods of construction
and, this being done and given a reduced element in a mesh, we discuss the conditions that give
guarantees about its geometric validity. As will be seen, the main idea is, given such an element
in a mesh, to return to a complete element equivalent to this reduced one and then to apply
what we did previously for complete elements. It turns out that this requires to properly invent
the "missing” nodes and, more precisely, the "missing” control points.

5.1 Order d serendipity (or reduced) triangles

To have at least one internal node, we need to have d = 3, so we meet the complete triangle of
degree 3, the well-known 10-node triangle, where we have only one internal node.

Zactually, for some reduced elements, one or several internal nodes of the complete element are retained as
nodes for the reduced element.
3¢f. infra.



The 9-node triangle of degree 3. The numbering of the nodes of the 10-node (9-node)
triangles is as follow:

003 003
102 012 == 102 012
201 111 021 201 021
300 210 120 030 300 210 120 030

A Taylor expansion, based on the fact that the reduced polynomial space must contain space
Pl = P2 (in terms of the variables z and y, the span of P? is made up of 1,z,y, zy, 2% and
y?), is used to express the edge values of a generic function (let ¢ be this function) in terms of
the internal value of this function. This leads, cf. [4], to a relation” like

12Q(A111 +2 Z Z]k _3 Z (18)

igkey ijke&

where Aj1; is the point, in the reference element (K), of coordinates (3,%,4), V stands for the

set of vertices in K and & stands for the set of edge nodes in K.

*
* %

Proof: We consider the template depicted in the above diagram (left side) and we use a Taylor
expansion to write the value of a function ¢ in Agog, .. A201, the 9 points in the boundary of
the template in terms of its value and its derivatives Dl.(.), D?.(.,.) evaluated at Aj11. Since
the expansion terminates at order 2, for a vertex, here Asyg, we have

. . — — —
q(A300) = q(A111) + D .(Usg0) + D?.(Usoo, Usoo)

N .
where Usgg = A111A300, the derivatives are evaluated at Aj1; and the symbol D?. includes (for
short) the coefficient, here . The same holds for the other vertices in V, so we have

Z q(Aije) = 3q(Ainn) + ZDl Uijk) Z D2 Z]k, i ). (19)

ijkey ijey ijkey

A similar relation holds for the six nodes in € and we have

A . —s — —
D q(Aije) =6q(A11) + > DV.(Vije) + > D*.(Vijk, Vijr) - (20)
ijhes ijkes ijkes

sy T
where V;‘jk = AlllAijk; with ijk € £.
The derivative D! is a linear operator, so D ijkey DY.(Uyjr) = Dl'(ZijkeV Uiji) = 0, similarly

— —
we havezijkeg Dl.(Vijk) = 0. Now, Vj;; can be written in terms of the Ujj,. Indeed, let us

, A . i i S U AT . . .
consider Asqg, we have As1g = m so Vo109 = M holds. Since, again for indexs1g,
we have

2U300 + Uozo  2U300 + Unso

—
D? . (Vag, Vaig) = D2.( 3 , 3

)

*the so-called serendipity relation.



4 — —> 4 — — 1 — —
= §D2-(U300, Usoo) + §D2-(U300, Uoso) + §D2-(U0307 Uo30)

and, by symmetry
— — 1 — — 4 — — 4 — —
D?.(Vigo, Vi) = §D2.(U3007 Usoo) + §D2-(U3007 Uoso) + §D2-(U030, Uoso)
and similar expressions for the other edge nodes, we have

= = 10 — —— 10 — —— 10 — =
Z D?.(Vijk, Viji) = KDQ-(UBOOa Usoo) + §D2.(U030, Uoso) + KDQ-(UOO& Uoos)

ijkeE
8 — — 8 — — 8 —_— —
+ §D2'(U300, Uoso) + §D2'(U300, Uoo3) + §D2'(U0307 Uoos) (21)
—
in other words, the sum for ijk in £ is replaced by sums for ijk in V. Now, because Zijkev Uijr, =

0, we have

— oy
D2 ( Z Ui Z Uijk) =0,
ijkeV ijkeV

from which we have
— — — — — —
D2 (Usoo, Unso) + D?.(Usoo, Uoos) + D?.(Uozo, Ugos)

1 ey e — = T
= —5 {Dz.(Ugoo, Usoo) + D2-(U0307 Uoso) + DZ-(U0037 U003)} )

and Relation (21) becomes
— — 2 — —— — — —
Z D?.(Vijk, Vijie) = 3 {DZ-(U:soo, Usoo) + D?.(Uoso, Uoso) + D?.(Uoos, Uoo3)} ;
ijkes

then, identifying this sum in Relations (19) and (20) proves Relation (18) and completes the
proof. O

*x ok

Since the pyjr(u, v, w)s enjoy the same properties, for all the indices ijk, we have
12pi6(Ainn) +2 Y pije(Aimn) =3 D pije(Ainn) =0.
Ilmney Imne€

Now, we use Relation (17) to replace the p;jps by their counterpart in terms of the complete
shape functions. For symmetry reasons, this relation reduces to

ngk(uv v, ’UJ) = pfjk‘(u’ v, ’UJ) + ap({ll(ua v, w) for Z]k S% )

and pZ]k(uv v, w) = pfjk‘(u7 v, w) + /Bptllll(u’ v, w) for ’L]k €& ;

in other words, there is only two coefficients. Let us fix ¢jk = 300, then, we have

12ps300(A111) +2 D psoo(Apmn) =3 Y psoo(Ammn) =0,

Imney Imne&



and this resumes to a = —%, and the same (fix ijk = 210) implies that g = %. With these

values, we have the reduced shape functions fully defined via (17), see hereafter.

Then the reduced element, seen as a patch reads

M(U, v, w) = sz]k(u) v, w)Aij )

where ijk lives in V and £, i.e., 9 indices. We replace again the p;jps by means of the D515
then we have

M (1,0, w) = (DG, v, w) + igep (u, v, w) ) A
ijk

with o = a or 3, then this reads also

M(’U,, v, ’U)) = Z pq,c]k(uu v, w)AZ]k + Z aijkAijkpill(u7 v, ’IU) )
ijk ijk

therefore let
A = Z ik Aiji
ijk
so that
M (u,v,w) = Z ik (s v, w) A
ijk
with now 10 indices. In other words, we have invented the node A117 with which we can define
a complete element fully equivalent to the reduced element. As already seen, a complete element
is equivalent to the Bézier patch

2 3
B’L]k(uv v, w)[)zjk ’
i+j+k=3

from which we obtain P11 and it turns out that Pjq1 simply read as

P = Z ik Pijk
ijk
e.g., the same expression as Aj11. To prove this, we write Aj11 in two ways, first Aj;1 =
Eijk a;jiAiji and, second, Aj11 = Zi+j+k:3 ijk(u,v, w) Pjp, with (u,v, w) = (%, %, %), then we
have the expression of P11 in terms of the P, and Aj11. To complete the proof, in Ay1; we
replace the A;j;s by means of the Pjj;s.

In practice. The 9-node triangle is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge AspgAoso,
—5A300 + 184210 — 9A120 + 24030 2A300 — 9A210 + 18A120 — 5A030

P19 = 5 and Pigo = 5

Then we compute Pj17 using the above formula. Then, just use Relation (13) to have the control
coeflicients of the jacobian.



The polynomial space of the reduced element. By construction, this space contains
space P2. Now, because the monomial z%y is in the complete space, it is easy, by means of
instantiations, to see that
2 4 c 2 (4 1 c
T°Y = 5rPo21 T 5nPorz F 5o P
then, following Relation (17), we have
14 12 4 2

C

9 4 n 2 4 1 . . n 1 .
xT = — — — _—-— _ —— = — — [
Y 27]9021 2710012 2710111 4 2719111 4 27pln 2710021 2710012 5429111 )

and the monomial 2%y is not in the reduced polynomial space because p$;; still contributes, so
it is for xy?. We repeat the same for z3. A simple calculation shows that:

3 = oo+ o prao + Poso + o=porz + —opozn + e
:[j g
2729210 271?120 Po3o 2729012 27]0021 271?111 s

and the monomial 23 is not in the reduced polynomial space, so it is for °. But the combinations

234222y, 2%y—2y? and y>+2xy? are combinations of the reduced functions (indeed, 2%4—25—; =0

and % — % = 0). As a conclusion, the diagram of the polynomial space is

1

.I‘z Ty y2

3+ :132y x2y — :L'y2 y3 + ﬂcy2
As compared with the polynomial space of the complete element, we miss 23, y>, 2%y and x>
but we have the above linear combinations of these monomials.

The shape functions. With the value of a and 8 and using Relation (17), it is easy to
obtain the explicit expression of the shape functions. Indeed, only two of them must be made
explicit since, for symmetry reasons, the other functions are evident to obtain. Therefore, we
use Relation (11) to express p§y,(u,v), pS1(u, v) and p§;;(u,v) and then compute pspo(u, v) and
p210(u, v), the two type functions, we find

1
p3oo(u, v, w) = §u(2u2 + 202 + 2w? — Buw — Suw — Svw) ,

9 2
or paoo(iﬂ,y):5(1—513—9)(5—!E—y+$y+$2+y2),

9 9
and  p210(u,v) = ZUU(‘W —2v+w) or pao(z,y) = 133(1 —z—y)(4 -6z —3y).

The two type functions are:

1 psoo(x,y)z%(1—x—y)(§—x—y+xy+w2+y2)
4 || paro(z,y) = 3 (

’ Type shape functions of the reduced 9-node triangle of degree 3 ‘

By symmetry (z — 1 —z, (u,v) = (v,u),etc.,in = or u), the full list is the following:

10



1 p300($ay):§1—1‘— )(g—x—y+xy—|—x +47)
2 pogo(x,y):ix(é—x—y—l—xy—i-x +9?)

3 p003($,y):§ (§—x—y+xy+x +9?)

4 || paro(z,y) = j2(1 —x —y)(4 — 62 — 3y)

51 pr2o(z,y) = §$(1 —z —y)(—2+ 6z + 3y)

6 || po21(z,y) = jry(l + 3z — 3y)

71 poi2(z,y) = %x (1 -3z + 3y)

8 || pro2(z,y) = %y(l —xz —y)(—2+ 3z + 6y)

9 || p201(z,y) = %y(l—:c— y)(4 — 3z — 6y)

] Shape functions of the reduced 9-node triangle of degree 3

This concludes the case of the 9-node triangle.

The 12-node triangle of degree 4. To give another example of an higher order reduced
triangle, we consider the case d = 4. The complete Lagrange triangle has 15 nodes including 3
internal nodes and the numbering of the nodes is as follow:

004 004
103 013 103 013
202 112 022 ==> 202 022
301 211 121 031 301 031
400 310 220 130 040 400 310 220 130 040

The reduced element, if any, has only 12 nodes. Constructing this element involves using 3
Taylor expansions centered at the 3 internal nodes and looking in the reduced space P for space
Pi=1 = P3_ From this results two serendipity relations (¢ being a generic function)

15q(Ag11) — 15¢(A121) = —2q(As00) + 2¢(Aoao)

—5q(A130) — 2q(A103) + 5¢(Az10) + 3q(A202) + 3q(Az01) + 2q(Ap13) — 3q(Ags1) — 3q(Ap2)

and
15q¢(Ag11) — 15¢(A112) = —2q(As00) + 2¢(Aoos)

—2q(A130) — 5q(A103) +3q(A3z10) + 3q(A220) 4+ 5¢(Az01) + 2q(Agz1) — 3¢(Agaz) — 3q(Aoz) . (22)
*
* %

Proof: We return to that we did for the previous element but, in this case, we consider the three
following sub-templates:

. . 004
103 . . 013 103 013
202 112 . . 112 022 202 112 022
301 211 121 . . 211 121 031 301 211 121 031
400 310 220 130 . . 310 220 130 040

11



and we note V11 and &311. ete., the set of vertices and the set of edge nodes relative to the
sub-template centered at A211, etc. We consider the sub-template depicted in the above diagram
(left side) and we use a Taylor expansion to write the value of a function ¢ in Ayo0, ..., Asor, the 9
points in the boundary of the sub-template in terms of its value and its derivatives D'.(.), D2.(.,.)
evaluated at Asq;. Since the expansion terminates at order 3, for a vertex, here A4y, we have

. . — — —
q(As00) = q(A211) + D' .(Usoo) + D?.(Uso0, Usoo) + D> (Ua00, Uaoo, Usoo)

— P ~
where Uy = A111A4400, the derivatives are evaluated at Ao and the symbols D?. and D3.

include (for short) the coefficients, here % and é The same holds for the other vertices in V11,

so, after summation, we have

S i) =3q(do)+ Y DT+ Y. DEUgh Ui+ Y. D (Usge Ui Ui -
1jk€Va11 ij€Va11 ijk€Var1 ijkE€Var1
(23)
A similar relation holds for the nodes in £911 and we have
S a(Aiy) =6g(Aa) + Y DL+ Y DAV Vg + Y. DV Vi Vigs)
ijk€€a11 ij€€a11 ijk€€an1 ijk€Ea11
(24)

— -
where V;jk = A211Al‘jk with ijk € E11.
—
The derivative D! is a linear operator, so D iikeVan DY.(Uijr) = Dl-(Zijkevm Uijr) = 0,
.. 1 —
similarly we have)_, e D*.(Viji) = 0.
)

On the other hand, Zijkevm D3.(Uijk, Usjk, Uiji:) # 0 while Y

0 and the two above relations simplify.

3 ’ ’ N

iikeesny D7 Vighs Vi Vige) =
. . . N N

Now, V;ji can be written in terms of the Uj;,. Indeed, let us consider Asyg, we have Asjg =

A A ? ST Tl . . .
% so V319 = % holds. Since, again for indexsig, we have

2U400 + U130 2Us00 + U130

— —
D2.(Va10, Va10) = D%.( 3 , 3

)

4 — — 4 —_— — 1 — —
= §D2-(U400, Uioo) + §D2.(U400, Uiso) + §D2.(U1307 Uiso) ,
and, by symmetry

— — 1 — — 4 — — 4 —_— —
D? (Vagp, Vagg) = §D2-(U400, Uioo) + §D2-(U400, Uizo) + §D2-(U130, Ui3o)

and similar expressions for the other egde nodes, we have

— — 10 — — 10 —_— — 10 — —
Z D% (Vijk, Viji) = §D2~(U400, Uio0) + SDZ-(UH’)O, Uizo) + §D2.(U103, U103)

ijk€&anl

8 — — 8 — — 8 —_— —
+ §D2-(U400, Uizo) + §D2.(U400, Uio3) + §D2'(U1307 U103) , (25)

in other words, the sum for ijk in &1 is replaced by sums for ijk in Va11. Now, because
Zz’jkevzu Uijr = 0, we have

ijk€Va11 ijk€Va11

12



from which we have

— — —
D?.(Uao0, Urzo) + D*.(Usoo, Uro3) + D?.(U30, U03)

1 s — s
=—3 {D2.(U400, Usoo0) + DQ'(UL‘}O, Utso) + DZ‘(U1037 U103)} )

and Relation (25) becomes
— — 2 —
Z D (Vijk, Viji) = 3 Z D*.(Uijk, Uijk)s
ijk€Ea11 ijk€Va11

and, now, Relations (19) and (20) respectively reduce to

; A ey e
> q(Aip) =3¢(Aan) + D D Uik, Ugk) + D>, D*(Uijk, Uiji, Uijie) »

ijk€V211 ijk€Va11 ijk€Var1
and
A . — — - 2 —_— —
D qlAip) =6q(Aa1) + Y D*(Vijk, Vigr) = 6q(Aan) + 3 > D’ (Uijk: Uijp) -
ijk€€211 i7k€E211 i7k€Va11

A linear combination of these two lines leads to
2 > qAr) =3 ) q(Air) = —12q(Aan) + 2 > D (Usjk, Uijk Uiji) »
ijk€Var1 ijke€ant 1jkEVar1
which is written as
e I N A A
2 Y DUk Uik Uit) = 12q(Aann) + 2 Y q(Agr) =3 D qlAii) .
1jk€Vai1 ijk€Var1 ijk€Ea11
The 2D3.(.,.,.) is a constant denoted as Ca11, so we have
Cont = 12q(Aon) + 2 > q(Aije) =3 > q(Ayr), (26)
ijkEVa11 ijk€E211

and the same applies to the two other sub-templates, so we also have

Cion = 12¢(A2n1) + 2 Y q(Aip) =3 Y q(Aip),

ijk€V121 ijk€€121
Ciiz = 12q(Ap2) + 2 Z g(Aijr) — 3 Z a(Ayr) -
ijk€Vi12 ijke€i12

We write Co11 = C121 = C112 and the Relations (22) hold, therefore completing the proof. O

*
* %

Since the p;ji(u, v,w)s enjoy the same properties, for all the indices ijk, Relations (22) also hold
for these functions. Now, we use Relation (17) to replace the p;j;s by their counterpart in terms
of the complete shape functions. For short, we write this relation as

pijk(u7 v, w) = pfjk(uv v, ’U}) + O‘ijkpgll(uv v, w) + ﬂijkpiﬂ (’U,, v, ’U)) + Vijkpil2(u7 v, w) .

13



Due to the symmetries, only three indices must be examined, 490, 310 and 299. For index 4q0,

Relations (22) simply reduce to

150400 — 158400 = —2 and  15ay00 — 157400 = —2,

therefore, we have only one parameter, say a1, and we have

2 2
Q400 = a1, Baoo = a1 + — and Y400 = Bago = a1 + — .

For index 319, we have

15

15

15310 — 158310 = Sor3azig — 36310 =1 and 15a310 — 159310 = 30or Sazip — 5y310 = 1,

therefore with one parameter, say «s, and we have

1
Q310 = a2, 310 = a2 — zand Y310 = a2 — — .

For index 999, we have

15920 — 153220 = 0 and  15c20 — 157220 = 3 0r Savaag — Hy220 = 1,

3

therefore with one parameter, say «s, and we have

Q20 = 3, 220 = azand a0 = a3 — — .

1
)

1
5

Again by symmetries, we have all the coeficients in terms of the three introduced parameters,

see the following table:

Lo [k | i | Bij | vign |
1 [[400 | ay o1 +2/15 [ o +2/15
2 (| 040 | a1 +2/15 | ay ar +2/15
3 1004 | ay +2/15 | a1 +2/15 | oy
4 310 a9 052—1/3 052—1/5
7 031 | ap —1/5 | ag ag —1/3
10 /103 [ az—1/3 | azs—1/5 | az
6 || 130 | a2 —1/3 | s g —1/5
9 013 a2—1/5 052—1/3 (6 %)

12 301 a9 042—1/5 042—1/3
5 220 as Qa3 a3 — 1/5
8 022 | ag —1/5 | a3 Qs
11 202 (0%} a3 — 1/5 a3

’ Coefficients for the repartition in terms of the three parameters.

Since Zijk ik = Zijk Bijk = Zijk Yijk = 1, we find the relation
3a1 + 6ag + 3ag = 2. (27)

As a consequence and a priori , we have as solution a family of triangles defined by two pa-
rameters. To make precise a choice, the method is to find some additional relations between

14



the two parameters by imposing some additional monomials (or linear combinations of mono-
mials) in the polynomial space of the reduced element. By construction, we have the space P3
included in the reduced polynomial space. As an exercice, we check that x is effectively present.
By instantiations, we know that x is in the complete space and (we evidently write the shape
functions in terms of (x,y) and not in terms of (u,v,w)) reads

1 2 3 3 2 1
T = Zpglo(iﬂ, y) + Zpgzo(% y) + prso(% Y) + Poao(w, y) + prm(x, y) + prm(a:, y) + ZP(C)B(J% Y)

1 2 1
+1P511($, y) + 1p§21(x7 y) + Zp‘flz(l‘, ),

but we have, here for index 319,

p310(2,y) = P510(2, y) + 3100511 (, ¥) + B310P121 (T, ¥) + V310P5112(7, Y)

then, conversely, we have

P510(%,¥) = p310(x, y) — az10p511 (T, y) — B310P121 (%, ¥) — ¥31005112(2, Y)

together with similar expressions for all the functions involves in . Now, we replace the complete
functions by means of these expressions and, looking only for the terms in p§;,;, we have

1 2 3
= —(p310(x,y) — az10p511 (2, y)) + = (p220(2, y) — 22200511 (%, %)) + — (P130(2, ¥) — Q130P%11 (2, ¥))

4 4 4
. 3 c 2 c
+(poao(x,y) — a0y (2, y)) + Z(posl(ﬂ«", y) — ao31pa11 (2, y)) + Z(pom(% y) — ao22p511 (2, Y))
1 C 1 C
+Z(p013(1’7y) — 0130511 (7, y)) + ZPQH(fL“ay) + .
so we have

1 2 3 3 2 1
x = Zpsm(x? y) + 1P220($7 y) + ZP130($7 y) + poao(z,y) + 1?031(33, y) + 1?022(33, y) + ZPOlS(% Y)

1 2 3 3 2 1] .
+ —ZOé:no - 106220 - 104130 — Q40 — 104031 - 104022 - 104013 + 1 p211(:c,y) + .

and we write the a;j;s in terms of the above three parameters, then, the coefficient in p$,;(x,y)
reduces to

2
—a1—2a2—a3+§,

thus, via the Relation (27), the contribution of p$;;(x,y) is null, so it is for the two other
”central” functions, therefore, with no surprise, x is in the reduced polynomial space.

Before going further, we consider the monomial 22. From x and more precisely from 4z, e.g.,
from the relation

4z = ps10(T,y) + 2p5e0 (7, y) + 3pT30(w, y) + 40540 (%, y) + 3431 (T, ¥) + 20622 (7, ¥) + PG13(7, Y)

+0511 (%, y) + 2pi01 (T, Y) + Plia(T,y),

we mechanically obtain

1622 = p§10(z,y) + 4P590(7,y) + 9530 (2, y) + 16p§s0 (2, y) + Ipiar (2, y) + 4pGas (2, y)
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+0513(2, y) + 311 (2, y) + 4pio (2, y) + plia(z,y),

then, as above, we replace the PgjiS by the corresponding p;;xs and the adequate repartition of
the ”central” functions. Then, as regard to p$,;(x,y), we find the relation

162% = (p310(2, y) — az10p511 (2,9)) +4(p220(z,y) — 2200511 (2, ) + I(p1so(z, y) — 130511 (2, )
+(poso(@, ¥) — aoa0p511(2,y)) + 9(pos1 (2, y) — c031P511 (2, y)) + 4(Po22(2,y) — cw22p511 (2, )
(po13(z,y) — co13p511 (@, ¥)) + Pori (@, y) + ..,

and it yields the coefficient (omitting the factor 16)
—(a310 + 4a20 + 9a130 + 16040 + 9vo31 + 4vg2 + ao13) + 1,
where we write the a;j;s in terms of a1, as and as, then we have the relation
0=—(va +4az+9(az —1/3) + 16(cv; +2/15) + 9(aa — 1/5) + 4(az3 — 1/5) + (e — 1/5) ) + 1
from which we obtain the relation
—16a7 — 20y — 8z = —14/3,

which gives the equation
8a1 + 10 + 4ag = 7/3 . (28)

Now, we turn to xy. Since:
162y = 3pgs1 (2, y) + 4pGaa (2, y)

+3p613(2, ¥) + P51 (2, y) + 2071 (2, y) + 2pT12(2, ) ,

as regard to p$y;(x,y), we find

162y = 3(pos1(z,y) — 0310511 (2, y)) + 4(po22(x,y) — 0220511 (7, y))

+3(po13(7, y) — 0130511 (7, Y)) + 511 (2, y) + -0y

and we have the coeflicient
—3ap31 — 4o — 3apgiz +1 = —3(042 — 1/5) — 4(043 — 1/5) — 3(0&2 — 1/5) +1,
which gives the equation
6as + 4oz = 3. (29)

Now we group together the 3 equations (27), (28) and (29) and the resulting system has no
solution.

As a conclusion, there is no way to find a reduced element covering P3. The sole chance to
find a solution is to reduce our quest by imposing only the P? space. To this end we return to
the three relations

Cor1 = 12q(Aon1) + 2 Z q(Aiji) — 3 Z a(Ar)

17kE€Va11 ijk€€211
Cio1 = 12¢(As1y) + 2 Z q(Ayjr) — 3 Z a(Aijr) |
ijkEVi21 ijk€€121

16



Ciz = 12¢(An2) +2 > q(Ayn) =3 )

1jk€V112 ijke€112

with the (restricted) constraints Co11 = 0,C121 = 0 and Cj12 = 0. This results to the following
System:

12(As11) = 3q(A121) — 3q(A112) = —2q(As00) — 2q(A130) — 2q(A103)

+3q(As10) + 3q(A220) + 3q(A202) + 3q(Aso1) ,

—3¢(Ag1) + 12¢(A121) — 3q(A112) = —2q(As10) — 2q(Aoso) — 2q(Ap1s)
+3q(A220) + 3q(A10) + 3q(Aoz1) + 3q(Aoz2) ,

—3q(Aan1) — 3q(A121) + 12¢(A112) = —2q(As01) — 2q(Aos1) — 2q(Aoos)
+3q¢(Aoz2) + 3¢(Ao1s) + 3q(Ar03) + 3q(Aan2) -

Now, we replace the generic function ¢ by the p;;is and we use Relation (17) to replace these
pijks by their counterpart in terms of the complete shape functions. We write
Pijk(u, v, w) = pijp(u, v, w) + gk P511 (U, v, W) + Bijk Piay (U, v, W) + Yijk PT12(u, v, ),

and we consider the three type functions, e.g. for ijk = 400,ijk = 310 and ijk = 220. The
previous system gives the corresponding coefficients and, by symmetries, all the coeflicients are
obtained as reported in the following table

¥

i | igk [oie [ Bigr [ vin |
1 1400 ] —1/5 | —1/15 ] —1/15
2 || 040 | —1/15 | —1/5 | —1/15
3 1004 | -1/15 | —1/15 | —1/5
4
7

310 | 7/30 | —1/10 | 1/30
031 | 1/30 | 7/30 | —1/10
10 || 103 | —=1/10 | 1/30 | 7/30
130 | —1/10 | 7/30 | 1/30
9 || 013|1/30 | —1/10 | 7/30
12 || 301 | 7/30 | 1/30 | —1/10
5 220 2/5 |2/5 |1/5

8 |l022]1/5 |2/5 |2/5
11202 ]2/5 |1/5 |2/5

(=)

] Coefficients for the repartition of the 12-node triangle.

and the following diagram displays the coefficients for the repartition corresponding to Ag1y.

-1/15
-1/10 1/30
2/5 1/5
7/30 [211] 1/30

-1/5 7/30 2/6 -1/10 -1/15
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From this, see herefater, we can compute the reduced shape functions.
Then, with the reduced shape functions, the reduced element, seen as a patch, reads
M(uv v, ’UJ) = ZPZ]k(uv v, w)Aij’ s
ijk
where the ijks consist in 12 indices. We replace again the p; s by means of the DijkS> then we
have

M (u,v,w) = Z(Pfjk(u» v, w) + kP (U, v, w) + BijkpTar (w, v, w) + Viepiia(ws v, w) ) A,
ijk
with the coefficients of the above table, then this reads also

M (u,v,w) =Y pfip(u,v,w) Agr + > ijeAijepsy (u, v, w)
ijk ijk
+ Z BijkAijrpiar (v, v, w) + Z Vijk AijkP12(t; v, w) |
ijk ijk
therefore let
Ao = Z gk Aiji
ijk
with 12 indices, and similar expressions for Aj9; and Aj12, so that
M(’U,, v, ’U)) = Z plcjk(ua v, w)Aljk )
ijk
with now 15 indices. In other words, we have invented the nodes Asi1, A121 and Aj1o with

which we can define a complete element fully equivalent to the reduced element. As already
seen, a complete element is equivalent to the Bézier patch

4
Z Bijk(uuvaw)-Pijkv
it+j+k=4

from which we obtain Ps11, Pio1 and Pii2. One can intuitively think that Psiq, ... simply reads
as

P11 = E Qi Pk 5 e s
ijk

e.g., the same expression as Asjy, ..., but, see [19], it is wrong.

In practice. The 12-node triangle analyse, given its nodes, leads to finding its edge control
points by the formulae, here for edge A400Ao40,

—13A400 + 48A310 — 36 A0 + 16 A130 — 3Ao40

P19 =

12
13A400 — 64A310 + 1204290 — 644130 + 13 A040
Py = 13 ,
p —3A400 + 164310 — 36 A0 + 48 A130 — 13A040
130 = .
12

Then we compute Po11, P121 and Pi12 by solving the 3 x 3 corresponding system. Then, just use
Relation (13) to have the control coefficients of the jacobian.
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The polynomial space of the reduced element. As seen during the construction of the
solution, the polynomial space contains P? and various instantiations show that some other
linear combinations of monomials are covered as depicted in the following diagram

1

1’2 Ty y2

3+ 23:23/ 3+ 233y2 y3 + 23:23/ y3 + 23:y2
and, therefore, 2® — 93 together with z%y — zy? are also covered.
The shape functions. As previously seen, it is only required to write the three type func-
tions, p400, p31o and pogg to have all of them by symmetries. To this end we need to explicit

Pi00s PS10s Psoo together with p$i,, piar, Pi1g, the "central” functions. After Relation (11), we
have

Pioo(u, v, w) = éu(zlu —1)(4u — 2)(4u — 3),
Ps10(u, v, w) = §U(4u —1)(4u —2)v,
P5ao(u, v, w) = du(du — 1)v(dv — 1),
P511(u, v, w) = 2uvw(4u — 1), pia; (u, v, w) = 32uvw(4v — 1) and pi 5 (u, v, w) = 32uvw(dw —1).

Then, for index 499, we have
1 32
paoo(u, v, w) = 6u(4u —1)(4u —2)(4u — 3) — 1—5uvw(3(4u - 1)+ (4v—-1)+ (4w —-1)),
then, using Maple, we have
(32/3)u — 16u> + (22/3)u® — u — (128/5)uvw + (32/3)uvw — (128/15)uvw — (128/15)uvw?

and, in terms of z and y, this reads

1
T5<1 —x —y)(15 — 110z — 110y + 24022 + 256zy + 240y> — 1602 4 22422y + 2242y — 160y°) .

For index 319, we obtain

paio(u,v,w) = gu(élu —1)(4u — 2)v + %uvw(?(élu —1)=34v—1)+ (4w —1)),

then, using Maple, we have
(128/3)uv — 32uv 4 (16/3)uv + (448/15)uvw — (16/3)uvw — (64/5)uvw + (64/15)uvw?),
and, in terms of x and y, this reads

16
Bxu — 2 —1)(15 — 50z — 27y + 40z? + 16> + 40zy) .

For index 299, we obtain

p220(u, v, w) = 4du(du — 1)v(dv — 1) + %uvw(2(4u —1)4+2(4v—-1)) 4 (4w —-1)),
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then, using Maple, we have
64u’v? — 16uv — 16uv? + 4uv + (256 /5)u’vw — 32uvw + (256/5)uvw + (128/5)uvw?

and, in terms of x and y, this reads

4
gac(l — 2 —y)(—15 + 80z + 44y — 8022 — 32y — 80xy).

The following table reports these functions:

L[ pavo(z,y) = (1 —z —y)

(15 — 110z — 110y + 24022 + 2562y + 240y — 16023 + 22422y + 22427 — 1603°)
4 || psro(z,y) = 122(1 — z — y)(15 — 50z — 2Ty + 402? + 16y> + 40zy)

5 || pe2o(x,y) = 23(1 — & — y) (=15 + 80z + 44y — 8022 — 32y> — 80xy)

’ Type shape functions of the reduced 12-node triangle of degree 4. ‘

To have all the shape functions, we simply apply adequate symmetries and rotations to the
three type functions using the form in (u,v,w) before writting the solution in (z,y). As an
example, one obtains the other functions of edge 400 — 040 by permuting v and v. Then, for
edge 400 — 004, the functions are those of edge 400 — 040 by changing v by w. To end, the
functions of edge 040 — 004 are obtained from those of edge 400 — 004 by permuting « and v.

This concludes the case of the 12-node triangle.

Reduced triangles of higher degree? Is there any higher order (e.g., 5,6, etc.) reduced
triangles, actually we don’t thing so apart if only the P? space is imposed and discussing this
point is necessarily a rather technical task, therefore, we don’t pursuit this story of reduced
triangles.

5.2 Order d serendipity quadrilaterals

The 8-node quad of degree 2. For d = 2, we have the 9-node quad with one internal node
and the numbering of the nodes is as follow:

02 12 22 02 12 22
01 11 21 ==> 01 21
00 10 20 00 10 20

To define the reduced element, we impose space P4 = P? to be included in the reduced polyno-
mial space. Then, the Taylor expansion gives the serendipity relation

49(An) + > q(Aiy) =2 q(Aij) =0, (30)
ijeV ijeE

where Ay is the point, in the reference element (K), of coordinates (%, %), V is the set of the
vertices in K and & is the set of the edge nodes in K.

This Serendipity relation also insures that the monomials u?v and uv? are part of the reduced
polynomial space.
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*
* %

Proof: We consider the template depicted in the above diagram (left side) and we use a Taylor
expansion to write the value of a function ¢ in Ao, ..., Ag1, the 8 points in the boundary of the
template in terms of its value and its derivatives D'.(.), D2.(.,.) evaluated at Aj;. Since the
expansion terminates at order 2, for a vertex, here Agg, we have

. — — —
q(Ago) = q(A11) + D'.(Uno) + D*.(Uno, Uno)

s .
where Upg = A11Aqo, the derivatives are evaluated at Aj; and the symbol D?. includes (for

short) the coefficient, here % The same holds for the other vertices in V), so, after summation,

Z q(Asj) = 4q(Anr) + Z D'.(U, w + Z D2 Uij (31)

ijeVy ijeVY ijeV

we have

A similar relation holds for the four nodes in £ and, after summation, we have

Z Q(Aij) q(A1) + Z D.(V; Z_] Z D2.(V; zy, (32)

ijeE ijeE ijeE

- T
where V;'j = AllAij with ij € €.

The derivative D1 is a linear operator so Y.

— -
ey D'.(U;;) = D' (>ijev Uij) = 0, similarly
we have) ¢ D! (VZ]) = 0. Now, VU can be written in terms of the U;;. Indeed, let us consider

Alo, we have Ag = M SO V M holds. Since, again for index;p, we have
— = U + U U + U — 1 — —>
D?.(Vig, Vig) = D*. (=2 5 e 5 2 = D2 (Too, Too) + D (oo, Uag) + 1D2~(U20,U20),

and similar expressions for the other indices, we have
—
2 2 (
> D2.(Vi, Vi) Z D*.(U;;, U,
ije€ l]EV

1 — — — — — — —
+ 3 {DQ-(UOOa Uso) + D?.(Usg, Uaz) + D?.(Usa, Una) + D*.(Upa, Uoo)} ,

but this last sum is null. Indeed,
— — — — — — — —
D?.(Ugo, Uzg) + D?.(Uzg, Uza) + D?.(Uza, Up2) + D?.(Up2, Ugo) = 0.
and, for the first two terms we have

—
[

— — — — — — — — — — —
D2.(Upg, Uz)+D?.(Usg, Usa) = D?*.(Ugg, Uag)+D?.(Uag, Uag) = D?.(Ung+Uss, Uzg) = D.( 0, Usg) ,

while for the two others, we have

— — — — — — — — — s — - —
D? (Usa, Upa)+D?.(Una, Ugo) = D*.(Usg, Uga)+D?.(Ugy, Una) = D?.(Uag+Uoo, Ugz) = D%.( 0, Upa),

and the sum is



Therefore

— — 1 — —
> DAV Vig) = 5 ) DU, Usj)

ijee ijeV
and identifying this sum in Relations (31) and (32) proves Relation (30) and completes the proof.
For a further usage, we introduce the value C1; defined by
— — 1 — —
Cu= ) D(Vij, Vi) — 5 > D(Uy5, Uyy),
ijee ijev

and the condition C11 = 0 is the constitutive definition of the reduced element from which results
Relation (30).

This constitutive condition holds for the monomials u?v and uv?. Indeed, for these mono-
mails, we consider a Taylor expansion of order 3 and, in this case, C’H is written as

—
ZD2 K 2] ZD2 Uz]aUm +ZD3 K 7,]5 zg ZDg 17 aU)
ije€ zjev ijeE ZJEV
But similarly to the D! derivatives (and for the same reason) we have
3 AT —> 3 AT
ZD z]a zga ZD ’Lja ’Lja )_07
ijey ije€
and then, for the monomial u?v of degree 3, the corresponding (17 is the same as in the consti-

tutive definition.

Remark. The monomial u?v? is not included in the space. Indeed, considering the Taylor
expansion of order 4 for this monomial, we have to consider the quantity

—» —
C11+ZD4 1]7‘/;]7 ij z] ZD4 YK zyaUZij‘j)a
ije€ UEV
— — AR
and check that ), jee D* (VU, Vij, Vijs U) 5 szev 1.(Uij,Uij, Uiz, Uij) # 0 for the function

g = u?v? and the given template. Let (u11,v11) be the coordinates of A11, Uiij and Us;j be the

— —
components of U;; and Vy;; and Va;; be the components of V;;, we compute the D* derivatives,
we have

a4(1(U11, U11)

[7> — —>) . l 84q(u11,011)
T Ouddv

D*(ui1,v11).(Us, Uiy, Ui, Ui Sl Uy + 4

34(](%11, U11)
Ou2ov?

but this reduces to

ot , ot ,
46 Ulzz'jaU22ij 4 q(u1n v“)Uh-jU%j N q(ug v11)U4_} ,

Oudv3

Uy

— — 184 ULL, v
D4(U,11,’1)11)-( ij)U] = 7M

2 772 2 772
ij>Uij, Uij) = 1 02002 UtijUsi; = Ut iUsiy
__)
so that, after summation, since the components of the U;; are respectively (—h, —h), (h, —=h), (h, h), (=h, h),

we have
—

—
ZD4 7,], Z]lejaUlJ)_4h4
ijey
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Similarly we sum on set £ where the vectors involved have as components
,(0,h),(—h,0) and we find

N[ —

where h =
(0,—h), (h,0

~—

and the sum of these two quantities is not zero, u?v? is not in the polynomial space (if it were,

this would come as a big surprise because the space would be the complete space!). Note that,
since we have found u?v and wv?, there is no real need to check that the other monomials are
not in the space because the number of monomials is equal to the dimension of the space.

As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

u2 uv U2

U2U UUQ

where we have the monomials of P? and the monomials of degree d + 1 = 3 with one variable
linearly involved.

As compared with the polynomial space of the complete element (the space Q2), we miss
uv?, 0
*

* ok

Since the p;j(u,v)s verify the same properties (e.g. Relation (30)), for all the indices ij, we
have
pij (A1) + ) pij(Am) =2 ) pij(Aim) = 0.
Ilmey Ilmeé&

Now, we use Relation (16) to replace the p;;s by their counterpart in terms of the complete
shape functions. For symmetry reasons, these relations reduce to

pij(u,v) = pij(u,v) + apf(u,v) for ij €V,
and pZ](u7 U) = pzcj<u7 U) + /Bpil('lh ’U) for 2.7 € ga
in other words, there is only two coeflicients. Let us fix ¢j = 00, then, we have

4poo(A11) + Y po0(Simn) =2 Y poo(Aim) =0,
Imey Ime&

1

—4, and the same (fix ij = 10) implies that 3 = %, see the following

and this resumes to o =
diagram:

-1/4 1/2  -1/4
1/2 1/2

-1/4 1/2 -1/4
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With these values, we have the reduced shape functions fully defined via (16), see hereafter.

Then the reduced element, seen as a patch reads
M(u,v) = Zpij(u, v)Aij,
]

where 75 lives in V and &, the set of vertices and edge nodes of the reduced element, i.e., 8
indices. We replace again the p;;s by means of the pfjs, then we have

M (u,v) = (p5(u, 0) + aypfy (u,0)) Ay,
]
with a;; = a or 3, then this reads also
M(u,v) = p(u,0)Aij + Y aijAgpiy (u,0),
ij ij
therefore let

A = aijAy,
]

with again 8 indices so that
M (u,v) = E pi;(u,v) Aij
]

but now with 9 indices. In other words, we have invented the node A;; with which we can
define a complete element fully equivalent to the reduced element. As already seen, a complete
element is equivalent to the Bézier patch

SN BHu)Bv)Py,

i=0,2 j=0,2

from which we obtain P;; and it turns out that P;; simply read as
P = Zaijpij ;
tj
e.g., the same expression as A;; with 8 indices (the proof is similar to that of the 9-node triangle).

In practice. The 8-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge AggAag,

—Apo +4A11 — Ay
5 .

Py =

Then we compute Pj; using the above formula. Then, just use Relation (15) to have the control
coefficients of the jacobian.
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The shape functions. With the value of a and § and using Relation (16), it is easy to
obtain the explicit expression of the shape functions. Indeed, only two of them must be made
explicit since, for symmetry reasons, the other functions are evident to obtain. Therefore, we
use Relation (10) to express p§(u,v), pfy(u,v) and p§;(u,v) and then compute poo(u,v) and
p1o(u,v), the two type functions, we find

poo(u,v) = (1 —u)(1 —v)(1 —2u—2v) and pio(u,v) =4u(l —u)(l—v).

The two type functions are:

1 || poo(u,v) = (1 —u)(l—ov)(1—2u—2v)
5 1 pro(u,v) =4u(l —u)(1 —v)

’ Type shape functions of the serendipity 8-node quad of degree 2.

By symmetry (v — 1 —u, (u,v) — (v,u), ete.), the full list is the following:

1| poo(u,v) = (1 —u)(l —v)(1 —2u—2v)
2 || pao(u,v) =u(l —v)(—1+ 2u — 2v)

3 || p2o(u,v) = wv(—3 + 2u + 2v)

4 || po2(u,v) = (1 —u)v(—=1 — 2u + 2v)

5 || pro(u,v) =4u(l —u)(1 —v)

6 || p21(u,v) = 4uv(l —v)

7 || paz(u,v) = 4u(l — u)v

8 || po1(u,v) =4(1 —u)v(l —v)

’ Shape functions of the serendipity 8-node quad of degree 2.

This concludes the case of the 8-node quadrilateral (note that this element can be defined
by means of a transfinite interpolation, [23]).

The 12-node quad of degree 3. Let us turn to d = 3. Here is the 16-node quad with four
internal nodes and the numbering of the nodes is as follow:

03 13 23 33 03 13 23 33
02 12 22 32 ==> 02 32
01 11 21 31 01 31
00 10 20 30 00 10 20 30

To define the reduced element, we impose space P4 = P3 to be included in the reduced polyno-
mial space. Then, the Taylor expansion gives the serendipity relations about A1, Ao1, A12 and
Aga: R ) )

4(An) + Y q(Aij) =2 > q(Ay) =0,

XIS %% ije€11

4q(Aa) + Y a(Ay) =2 ) a(Ay) =0,
ijE€Va1 ije€a

49(A) + > q(Aij) =2 > q(Ay) =0,
ijEV12 ij€€12
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49(Ap) + Y q(dij) -2 > q(Ay) =0. (33)

ijE€Va2 1jE€E22
where Aj; is the point, in the reference element (K), of coordinates (3, 3) Vi1 is the set of the
vertices in K for the sub- template centered at A11 and 511 is the set of the edge nodes in K for

the same sub-template and, similarly, for Agl, Algand Agg, see the diagram.

. . .o . . . . 03 13 23 . . 13 23 33
02 12 22 . .12 22 32 02 12 22 . . 12 22 32
01 11 21 . .11 21 31 01 11 21 . .11 21 31

00 10 20 . . 10 20 30

As in the previous element, the above Serendipity relations also insure that the monomials

3v and uv? are part of the reduced polynomial space.

u

*
*x %

Proof: We return to the method used for the previous element. We consider the four sub-
templates depicted in the above diagram, each of them being centered at one ”central node”.
Given a sub- template for example the one centered at Ajq, we consider Vi, e. g., Ao, ..., Age
and &1, e.g., Alo, .. A01 and we use a Taylor expansion to write the values of a function ¢ in
terms of the nodes of this two sets and the derivatives D'.(.), D2.(.,.), D3.(,,.,.) evaluated at
AH. Since the expansion terminates at order 3, for a vertex, here Ay, we have

. - — — — — s —
q(Ago) = q(A11) + D'.(Uno) + D*.(Uno, Uno) + D*.(Ugo, Uoo, Uno)

— N N N

where Uy = A11Ago, the derivatives are evaluated at Ay; and the symbols D?., D3. include
(for short) the coefficient, here % and %. The same holds for the other vertices in V1, so, after
summation, we have

; — —
> qlAy) =4q(An) + DTy + > D (Ui, Uy + > D (Ui, Ui, Ugh) . (34)
1jEVI1 ij€V11 ij€V11 ij€V11
A similar relation holds for the nodes in 511 and the summation gives

Z Q(Aij)—4q All Z Dl Vij) Z D2 Vuvvw Z DS.(‘/ij,‘Ti;,‘Ti;). (35)

ije€11 ije€nn ije€11 ije€n

]

N T
where Vz‘j = A11Aij with ij € &11. .
—
The derivative D! is a linear operator, s0 3 .y, | D'.(U;;) = DL (Xijevy, Uij) = 0, similarly

we have Zwe &1 D! (VU) = 0 and the same holds for the derlvatlve D3, and, in general, for all
%
the odd derivatives. Now, V;j can be written in terms of the UZ] Indeed, let us consider A10, we
—)
have A10 A00+A2° e V M holds and we return, for this sub-template, to the result

obtained in the previous element and then we obtain the above initial relation thus completing
the proof.

As we did in the previous element and for a further usage, we introduce the value C; defined

by
Z D2 z]7 zg Z D2 zja

ije€ ZJEV
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but indeed, this reads

— — — = = — = —
Cu= Y D.(V, U, ” Z D*.(Uyj, Ug)+ >, D>V, Vig, Vi) —5 Y D*.(Ui;, Ui, Usj)
iJ€EN 1]6V11 ij€€11 ij€V11

and the condition C7; = 0 together with C; = C192 = (U2 = 0 for the three other sub-templates
are the constitutive definitions of the reduced element from which results the four Relations (33).

3

We return to Ci1, Ca1, C12 and Cas but, since u”v is of degree 4, we need to examine values

like (here for Ci;)

2 2 — e e ! 3 7 =
Cun= Y D.(Vyy,Vi Z D=.(Uyj, ij)“‘.z D ~(Vz‘j7Vz‘j,Vz‘j)—§‘Z D”.(Usj, Uij, Uij)
ij€E1L 1]€V11 1j€€11 ije€V11
— = = —= 1 — — = —
+ ) D4-(V%j,V%j,V%j,V%j)—§ > D'.(Uij, Ui, Uy, Usy)
ije€11 ijeV11

which resumes to

— — — —

2 2 4 4

Ci1 = E D=, z], E D=, Uz], E D=, VZ], —— E D=, Ul]? U U),
ij€€11 UEVH ij€€11 Z]EVll

G e — _
and Cq1 will be zero if Zzgeﬁn D* (Vij, Vi, Vi, Vig) — 5 Zwevn D*. (Uwa Uij,Uij, Usj) vanishes.

Let (u11,v11) be the coordinates of Ay, Uii; and Uy;; be the components of U;; and Vi;; and
—
Vaij be the components of V;;, we compute the D* derivatives, we have

OYq(ui1,v11)

4
Urij +4 duddv

— — —> —> 1 (0*q(u1r,v11)
1 { Uty Uz

D*(u1,v11)-(Uij, Uiz, U, Uij) = Tl

64(1(“11, U11)

6
+ Ou2ov?

84Q(U117'U11) 34Q(U117U11)

but, while ¢ = u3v, this reduces to

4 — — — — 1 9%q(un,vn)
D (ullavll)-(Uij,Uij,Uij,Uij) = E W

1
UigijUZ’ij = gUf’ijU%j )
_>
so that, after summation, since the components of the U;; are respectively (—h, —h), (h, —h), (h, h), (=h, h),
we have BN 1
—= Z D*.(U, z]> zg,Uz‘j,Uz’j) = _ﬁ(h4 —h*+h*—h*) =0
1J€V11

where h = % Similarly we sum on set £ where the vectors involved have as components
(0,—h), (h,0),(0,h),(—h,0) and we find

.)
ZD4 Vi Vi Vi) = 6(0+0+0+0) 0,

ije€11

and the sum of these two quantities is zero and the same holds for the three other sums (for
Cs1,c12 and Cog) and w3v is in the space, so it is for uv>.
Now, with these two monomials, the dimension of the space is 12, so there is no more

monomials in this space.
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As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

u uv v

u v uv

where we have the monomials of P3 and the monomials of degree d + 1 = 4 with one variable
linearly involved. As compared with the polynomial space of the complete element (the space

Q?), we miss u?v?, u3v?, u?v?® and u3v3. O

*x ok

From the four Serendipity relations, we write a system where the unknowns are the values
of the function ¢ at the four ”central” nodes, we obtain the following system:

4 -2 -2 1 Q(f:ln) —Q(filoo) Q(z‘:bo) Q(x‘:102) + 2Q(z‘:110) + 2Q(z‘:101)
-2 4 1 =2 q(A21) | _ | —a(Aw) — a(Asz0) — q(As2) + 2q(A20) + 2q(As1)
-2 1 4 =2 q(Ai2) —q(Ao1) — q(A23) — q(Ao3) + 2q(A13) + 2q(Ao2)
L -2 -2 4 q(Aa2) —q(As1) — q(As3) — q(A13) + 2q(Asz2) + 2¢(As3)
The solution (Gauss elimination by hand or Maple), here for Agy, reads
. 1 . . . . . . . .
q(Az) = 5(—61(1400) —2q(Asz0) — 4q(As3) — 2q(Ao3) + 3q(Az0) + 6g(As2) + 6¢(A23) + 3q(Ao2))

which corresponds to the following diagram

-2/9 . 2/3 -4/9
1/3 . [2.2] 2/3
-1/9 . 1/3 -2/9

and similar solutions for the other ”central” values. In extenso, we have
9g(Az2) + q(Aoo) + 2q(Asz0) + 4q(Ass) + 2q(Aos) — 3q(An) — 6g(Asz) — 6q(Ass) — 3q(Anz) =0,

9q(A11) + 4q(Ago) + 2¢(As0) + q(As3) + 2¢(Ag3) — 6g(A10) — 3q(Az1) — 3¢(A13) — 6¢(Ag1) =0,
9g(A21) + 2q(Aoo) + 4q(Aso) + 2q(Ass) + q(Ags) — 6q(Az) — 6g(As1) — 3q(Azs) — 3q(Ag1) =0,
9q(A12)+2q(Ago)+q(Az0)+2q(Ass) +4q(Ans) —3q(A10) —3q(Az2) —6¢(A13) —6q(Ag2) = 0. (36)

With these values, we have the reduced shape functions fully defined via (16), see hereafter.
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Then the reduced element, seen as a patch reads
M(u,v) = sz’j(% v)Aij,
tj

where ij lives in V and &, the set of vertices and edge nodes of the reduced element, i.e., 12
indices. We replace again the p;;s by means of the pfjs, then, with evident notations, we have

M(uv U) = Z(pij (u’ U) + O‘zljlp(ljl(ua U) + O‘z?jlpgl(uv U) + O‘zlj2p§2(u7 U) + (12-2]-2]9(2:2 (uv U) ) Aij )
j
with, for example, 0412]2, the coefficients in the above diagram and similar values for the 3 other

nodes. Then, this reads also

M(u,v) =Y pfi(u,v)Aij + Y alf Aypfy (u,0) + ) af) Aypsy (u, 0)

ij ij ij
D al? AipSa(u,v) + > 0 AipSy(u, v)
ij ij
therefore let
A11 = Z OzlelAij, AQl = Z a?leij, ceey

ij ij
again with 12 indices, so that the patch is

M (u,v) =Y pf(u,v) A,

ij

but now with 16 indices. In other words, we have invented the nodes A1, As1, A1o and Ago
with which we can define a complete element fully equivalent to the reduced element. As already
seen, a complete element is equivalent to the Bézier patch

> > Bluw)Bi(v)Py,
i=0,3 j=0,3

from which we obtain Pi1, P21, P12 and Py and it turns out that P simply read as
Pu=) afjP;,
ij

with, here, 12 indices, e.g., the same expression as A1 and similar values for the 3 other control
points, see [20].

In practice. The 12-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge AggAsg,
—5A00 + 184190 — 9450 + 2439 2A00 — 9A10 + 18A99 — 5 A3,

Py = 6 and Pyy = 5

Then we compute Pj1, Pa1, P12 and Pa using the above formulae. Then, just use Relation (15)
to have the control coefficients of the jacobian.
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The shape functions. With the values of af} and using Relation (16), it is easy to obtain the
explicit expression of the shape functions. Indeed, only two of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)
to express piy(u,v), pfo(u,v) and pf; (u,v), ps; (u,v), piy(u,v) and p$,(u,v) and then compute
poo(u,v) and p1o(u,v), the two type functions, we find

poo(u,v) = %(1 —u)(1l— v)(% —u—v4ut+v*) and pio(u,v) = gu(l —u)(2—3u)(l—v).

The two type functions are:

(I-uw)(1-v)(3 —u—v+u?+0?)
u(l —u)(2 —3u)(1 —v)

1 || poo(u,v) =

’ Type shape functions of the serendipity 12-node quad of degree 3. ‘

By symmetry (v — 1 —u, (u,v) — (v, u), ete.), the full list is the following:

1 [ poo(u,v) =31 —u)(1 —v)(3 —u—v+u?+0?)
2 || pso(u,v) = %u(l—v)(%—u—v—i—uz—kvz)
3 | pss(u,v) = Juv(Z —u—v+u? +0?)

4 || pos(u,v) %(l—u)v(%—u—v—kug—f—vg)
5 || pro(u,v) = 5u(l —u)(2 —3u)(1 —v)

6 || poo(u,v) = Fu(l —u)(3u—1)(1 —v)

7 | pa1(u,v) = Ju(1 —v)(2 - 3v)u

8 || psa(u,v) = 3v(1 —v)(3v — 1)u

9 || pos(u,v) = Ju(l —u)(3u—1)v

10 || p13(u,v) = u(l — u)(2 — 3u)v

11 || poz(u,v) = §U(1 —0)(3v —1)(1 —u)

12 || po1(u,v) = s5v(1 —v)(2 — 3v)(1 — u)

’ Shape functions of the serendipity 12-node quad of degree 3.

This concludes the case of the 12-node quad (note that this element can also be defined by
means of a transfinite interpolation, [23]).

The 17-node quad of degree 4. Let us turn to d = 4. The 25-node quad includes 9 internal
nodes structured as follow:

04 14 24 34 44 04 14 24 34 44
03 13 23 33 43 03 43
02 12 22 32 42 ==> 02 22 42
01 11 21 31 41 01 41
00 10 20 30 40 00 10 20 30 40

We follow the same method using a Taylor expansion and looking for P¢ = P* on the sub-
templates (see the diagram) centered at the ”central” nodes. As for the sub-template centered
at AH, we write the vertex floo and the other vertices and, after summation (the terms in D!
and in D3 sum to zero), we have

q(Aoo) + q(Az0) + q(Az) + q(Ao2) = 4q(A11)
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— —> — —> — —> — —>
+D?.(Ugg, Ugo) 4+ D?.(Usg, Uag) + D?.(Uaz, Uza) + D*.(Upz, Uns)
—_— = — — —_— = — — —_— = — — —_— = — —
D*.(Uoo, Uoo, Uoo, Uno)+D*.(Uzg, Uzg, Usg, Usg)+D*.(Usz, Usz, Uz, Usz)+D*.(Upz, Uoz, Uoa, Una) -
(37)
written as
X — — = — —
> q(dy) =4q(An) + > DUy, Usy) + > D'.(Uy, Ui, Ui, Usj)
ijEVI1 ijEVI1 ijeEVI1
with the same notations as before.
For the nodes in £11, we have a similar relation
; . — — — = =
> a(Aiy) =4q(An) + > DA(Vig, Vig) + Y D .(Vig, Vij, Vig, Vi) -
ij€EN ije€11 ije€E11
As for the previous element, we have
— = 1 — —
> Dz-(‘/%j7‘/%j):§ > D*.(Uy, Us)
ije€n ij€V11
from these we combine the two above lines so as to cancel the terms in D? and we obtain
: - TR —> TARTAR ARV
Z Q(Aij)_z Z Q<Aij):_4q All Z D4 z]7 ’LJ7 z]y Z D4 z]y z]szpV;j)a
ij€V11 ij€€11 ij€V11 ije€1

— = = —
But the D* derivatives are a constant, let us define O3 = > Uij, Uij, Uij, Uij) —

— = = =
23 ijeen D*.(Vij,Vij, Vij, Vij), then we have the relation

Cu=4g(An)+ Y q(Aij) =2 > q(Ay). (38)

ij€V11 ij€€11

4
ijevn D7 (

Then, we have the relation about /111 for the first sub-template

02 12 22

01 11 21
00 10 20

and we repeat the same process for all the other sub-templates. As a consequence, we ob-

tain 9 relations, say
Cu =4q(An) + Y q(Ay) -2 Y a(4y)

ijeEV11 tje€1
Cor =4q(An) + Y a(Aiy) =2 > q(Ay)
ijE€V2 ij€€a1

Coz = 4q(A) + Y q(Aiy) =2 > q(Ay)

1j€V22 1j€E2
Now since we have C11 = Cy1 = ... = (U9, therefore only 8 equations, we consider the ”central”
function (index 22) as known so as to have only 8 unknowns and a 8 x 8 system in hand (and
the reduced element has 17 nodes, one being internal).
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The above system is the constitutive Serendipity relation. We will show that the monomials

utv and wv* are also covered. For monomial u*v, the Taylor expansion of degree 5 gives:
s s — = — —
Ci= Z D*.(Uij,Uij, Uyj, Uyy) — 2 Z D*.(Vij, Vij, Vi, Vii) s
ij€V11 ij€€1
as
— = = — — — = = — —

> DUy, Uiy, Ui, Uiy, Usg) = Y D°(Vij, Vig, Vi, Vi, Vi) = 0.

ijEVI1 ij€€11
Now

4 — — — — 1 [0'q(ui1,v11) 4 *q(urr, vi1) 3
D*(u11,v11)-(Uij, Uiz, Uij, Uij) = ] {WUlij + 4WUlijU2ij

64(](”117011) 34(1(”11,@11) 3 84Q(U11,1)11) 4
Ou20v? Oudv3 UijUsij + Ovt Uzij [ >

but each partial derivatives are linear, more precisely:

+6 Ut Usiy + 4

8461(“11, 7111)

871,4 :4!1)11,

84q(u11, U11)
Ou3dv

and the other partials are null. Therefore

= 3!U11 5

4 T 4 3
D*(u11,v11)-(Uij, Uiz, Uij, Uij) = v11Uq;; + unnUg; Uz -

Hence,
—_— = =
E : 4 § : 4 3 § : 4 4
D '(UijaU’ijanj7Uij) = {U11U1ij + UllUlijUQij} = {Ullqu} = 41)11}7, s
ijeEVI1 ijEVI1 ijEVI1

now, we consider
— = — —
4 4 3 4 4
Z D*.(Vij, Vig, Vig, Vij) = Z {vViy; + unVij;Vai | = Z {viiViy; } = 201107
ije€1 ijeV11 ijeV11

Then, we have C11 = 0 which is a particular case of the constitutive relation.

As a conclusion, and following [1], the reduced element is a member of the serendipity family

and the diagram of its polynomial space is

1
U v
u? uv v?
ud uPv uw?® v
ut v wP? ow? vt
u'v uv?
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where we have the monomials of P* and the monomials of degree d + 1 = 5 with one variable

linearly involved. As compared with the polynomial space of the complete element (the space

Q4), we miss the 8 monomials among the u*v’s with i + j > 5 apart u*v and uwv?.

Now, we solve the Serendipity system to finding the Serendipity relationships. The first
equation results from C1; = C9q, and we find

6q(A11) — 6q(Aa1) +2q(Az1) — 3q(A12) + 3¢(Az) — q(Az2) =

—q(Ago) + 3¢(A10) — 3q(A20) + q(As0) + 2¢(Ao1) — q(Ag2) -

Once the 7 other equations, see [20], are obtained, we solve the system, using Maple, and the
solution, by symmetry, can be deduced from only two precise (type) solutions, the one in Aj;
and the other in Ay, we have

p 1

q(A1p) = 61 { 27q(Ano) + 48q(A10) + 48¢(Ao1) — 3¢(As9) + 16q(Aar) + 16g(A14) + 5g(Aua)

~3(Ao) — 18¢(A20) — 18¢(Asz) + 369(Az2) — 189(Asz) — 189( A1) | . (39)

1 R R R R o o o o
q(A21) = — {*361(1400) + 6q(A20) + 8q(Ao1) — 6q(Ao2) + 12g(Aaa) — 3q(Aao) + 8q(A41) — 6q(As2)

16
—2q(Azq) + 1q(Asa) + 1Q(Ao4)} ; (40)

and the corresponding diagrams are

-3/64 16/64 -18/64 O 5/64 1/16 0 -2/16 0 1/16

0 0 0 0

-18/64 36/64 -18/64 -6/16 12/16 -6/16

48/64 [1.1] 16/64 8/16 [2.1] 8/16
-27/64 48/64 -18/64 0 -3/64 -3/16 0 6/16 0 -3/16

Using these coefficients, we have the reduced shape functions fully defined via (16), see
hereafter.

Then the reduced element, seen as a patch reads
v) =Y pij(u,v) Ay,
tj

where ij denotes the indices of the (4) vertices, the (12) edge nodes and the (1) internal node
of the reduced element, i.e., 17 indices. We replace again the p;js by means of the pf;s, then,
with evident notations, we have

M (u,v) = Z{pmuv +Zaﬂpiluv}Aij,
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with, for example, a i L and aw , the coefficients in the above diagrams. Then, this also reads

me u,v)Asj +ZZO¢ lA”pkl (u,v) Z pi;(u,v) Ay —i—ZZa”AUpkl u,v),
i ij

therefore let

Akl = E af}A”
j
again with 17 indices, so that the patch is

v) =Y piiu,0) Ay,
ij

but now with 25 indices. In other words, we have invented the nodes A11, A2, ... with which
we can define a complete element fully equivalent to the reduced element. As already seen, a
complete element is equivalent to the Bézier patch

2. D BlwB©)Py,

i=0,4 j=0,4

from which we obtain Pj1, P»1, ... and the relations are not those of the above nodes.

In practice. The 17-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge AggAao,

—13Ag0 + 48A19 — 36 A0 + 16A39 — 344

P =
10 12
13A00 — 64A10 + 120A20 — 641430 + 13A40
Py = ,
18
P —3Agp + 16A19 — 36 A5 + 48 A39 — 13 A4
30 = .
12

Then we compute Pjj, Py, ... by solving the corresponding system. Then, just use Relation (15)
to have the control coefficients of the jacobian.

The shape functions. With the values of af} and using Relation (16), it is easy to obtain the
explicit expression of the shape functions. Indeed, only four of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)

to express pg(u,v), pfy(u,v), p5y(u,v) and ps,(u,v) with p§;(u,v), pSy(u,v), ..., pfy(u, v) and
then compute poo(u, v), p1o(u, v), p2o(u,v) and peo(u,v), the four type functions, we find

poo(u,v) = 1/3(1 —u)(1 — v)(3 — 22u — 22v + 48u? + 12uv + 48v? — 32u> — 3203)
pro(u,v) = 16/3(u)(1 —u)(1 — 2u)(3 — 4u)(1 — v),
p2o(u,v) = 4u(l — u)(1 —v)(=3 + 16u — 2v — 16u?),
p22(u,v) = 16u(l —u)v(l —v).

The four type functions are:
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1 ] poo(u,v) = (1 —u)(1 —v)(3 — 22u — 22v + 48u? + 12uv + 480> — 32u3 — 3207)

5 || pro(u,v) = FPu(l —u)(1 - 2u)(3 — 4u)(1 —v)

6 || p2o(u,v) = 4u(1 —u)(1 —v) (=3 + 16u — 2v — 16u?)

17 || paz(u,v) = 16u(l — u)v(l — v)

] Type shape functions of the serendipity 17-node quad of degree 4. ‘

By symmetry (v — 1 —u, (u,v) — (v,u), ete.), the full list is the following:

1| poo(u,v) = 2(1 —u)(1 —v)(3 — 22u — 22v + 48u? + 12uv + 48v% — 32u® — 320%)

2 || pao(u,v) = 1 u(1 — v) (=3 + 22u — 10v — 48u? — 12uv + 48v% + 32u3 — 3203)

3 || paalu,v) = i v(3 + 10u + 10v — 48u? + 12uv — 48v% + 32u3 + 320v3)

4 || pos(u,v) = i(1 —u)v(—3 — 10u + 220 + 48u? — 12uv — 48v% — 32u3 + 3203)

5 || po(u,v) = %36 (I —u)(1 —2u)(3 —4u)(1 —v)

6 || pao(u,v) :4 (1 —u)(1 —v)(—=3+ 16u — 2v — 16u?)

7 | p3o(u,v) = Pu(l —u)(1 - 2u)(1 — 4u)(1 — v)

8 || pa1(u,v) = 3uv(1 —v)(1 —2v)(3 — 4v)

9 || paz(u,v) = 41}(1 —v)u(=3 + 16v — 2u — 16v?)

10 || pas(u,v) = 3 (1 — v)(1 — 20)(1 — 4v)

11 || psa(u,v) = Bu(l —u)(1 - 2u)(1 — 4u)v

12 || paa(u,v) = 4u(1 —w)v(—3 + 16u — 2v — 16u?)

13 || pra(u,v) = Lu(l — uw)(1 — 2u)(3 — du)v

14 || pos(u,v) = (1 —w)v(l —v)(1 —2v)(1 — 4v)

15 pog(u,v)=4 (1 —v)(1 —u)(—3+ 16v — 2u — 16v?)

16 || poi(u,v) = 1—??(1 —u)v(l —v)(1 —2v)(3 — 4v)

17 || p22(u,v) = 16u(l — u)v(l — v)

’ Shape functions of the serendipity 17-node quad of degree 4.

This concludes the case of the 17-node quad.

The 24-node quad of degree 5. Let us turn to d = 5. The 36-node quad includes 16 internal

nodes structured as follow:

05 15 256 35 45 55 05 15 256 35 45 55
04 14 24 34 44 54 04 54
03 13 23 33 43 53 03 23 33 53
02 12 22 32 42 52 ==> 02 22 32 52
01 11 21 31 41 51 01 51
00 10 20 30 40 50 00 10 20 30 40 50

A serendipity quad of degree 5 can be found in [1] and [15] but this element has 23 nodes
therefore only 3 internal nodes. As a consequence, the internal nodes cannot be symmetrically
located. While this seems appropriate for a bidimensional element, we are convinced that it is
not suitable in three dimensions if we consider the faces of an hexahedron of degree 5. This is

the reason why we like to find a different element, now, with 24 nodes.

As a matter of fact, what we did for the quad of degree 4 applies here for all the sub-templates,

so that we have relations like

. X — — —
Z q(Aij)—2 Z q(Aij) = —4q(Ap1)+ Z D*( Uz],UzjaUl]aUZj -2 Z D*( Vzg,V Vis,
ij€V11 ij€€11 ij€V11 ij€€11
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But now the D?* derivatives are not constant but are a polynomial of (Lgree 1 in terms of the

coordinates of AH for the given conﬁguratlon of the vectors U;; and V;; involved in the sub-
— DT
template. Let us define C1 = Zijevu (UZJ7 Uw UZJ7 Uij) — 2Zije£11 .(Vij, Vij, Vij, Vij), so

that the previous relation reads
Cu=4g(An)+ Y a(Aij) =2 > q(Ay). (41)

ijEVI1 ije€€11

; —
Let (u11,v11) be the coordinates of A1, Ui;; and Uy be the components of U;; and Vi;; and
Vaij be the components of V;;, we compute the D* derivatives, we have

AR —> — = — —>
Ci1 = Cii(uir, o) = Z D*(u11,v11).(Usj, Uiz, Uij, U, Z D*(u11,v11).(Vij, Vij, Vigs Vig)
ijeV11 ij€€11

e Dq(ury, o) e
q\u11,v11) 774 qlu11, V11
out Uij + 4 Ouddv
a4(1(U11,011) 34q(U11,v11) 54(](”11,1111)
Ou20v? Oudv3 Ovt

simply written as (with C¥ the binomial coefficients)

i

— —
D*(u1,v11)-(Uij, Uy

—
3
i Uij Usj) = Ut Uxij

— *q(u1,v _
D4(U117U11)'(Ui]7U7,j7 ij» U, ch Bfﬁ@ll‘l 1lcl)U{€iJ'U24ijk‘

Since the degree of ¢ is 5, we have

8461(“117 Un)
Oukovi—+

with some coeﬂﬁimen‘cs_&C Br and yg. The idea is to consider C; and, more precisely, the term
4 —
D*(ua1,v21).(Usj, UU, Ui;,Uij) and to look at the difference

= agu11 + Brvir + Ve

SN s —
D*(ug1,v91).(Uij, Usj, Ui, Uij) — D*(ur1, v11)-(Uss, Usj, Ui, Ui
this reads
> CF {(ouar + Brvar + i) — (epuns + Brons + )} Ul Usis*
but v9; = v11 and w9 — U1 = l, so this resumes to

5

Z 4—k Z kak 4—k
C’4 ak U21 — ull)Ul’L]UQ’L] UlZ]UQU )
k

which is then independent of the position. For the other term in C7; and Cy, we have the
same result. In the other direction, say by considering Ci2 — C41, we also have the same
conclusion. Therefore, we impose the equality between the difference of two consecutive Cj; in
both directions. This results in 8 relations in the u-directions, 2 by line where v is constant.
Then we impose the equality between the four lines v constant, therefore 3 more relations and,
by summation, we have 11 relations in the u-direction. We also have a priori 11 similar relations
in the v-direction. But some are redundant. Indeed, once the relations for the lines (in u) are
imposed, the 2 relations for the first column (in v) induce the 9 others. Therefore we have 13
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relations and 12 unknowns. It means that there exists a relation about the lines which is still
redundant and that gives a dependency of one central node with the free nodes.

Now, we show the inclusion of the monomials ©’v and uv® in the reduced polynomial space
using the Serendipity relations (like C1o — C11 = constante). The Taylor expansion of degree 6
of monomial v°v leads to

— s — — s —
4
Ci = Z D*(ui1,v11)-(Uij, Uij, Ui, Usj) — 2 Z D*(u11,v11).(Vij, Vi, Vig, Vig)
IYISA%E i7€€11
i o —
+ > DO(ury,v11).(Uij, U, Ui, Uiy, Ui, Uig) = 2y DS (ua, on1).(Vig, Vi, Vg Vigi Vig, Vig) -
ij€V11 ij€€11

In this expression, partials in D% are constant while those in D?* are polynomials of degree 2.
— = = —
Z D4(U11,1}11).(UZ’]’,UZ‘]',Uij,Uij) = Z {5U11U11Uﬁ-j + 10u%1U13ijU2ij}
ijeV11 ijeV11

Z {5u11011U1;; } = 20usg011h?*

ijEVI1
Now e gt
> D*(urr,vn1).(Vij, Vi, Vi, Vig) = > {Bunon Vil; + 10uf; Vi Vais
ije€1 ij€V11
Z {5u1v11Vij; } == 10uyivi1h?,
ijeEVI1
then

_ E: 6 A SN SR T A FFA T E' 6 R TR TR AR TAAR T
- ) \Yaig, Vg, Vig, Yy, Yig, Ys ) \Vags Vagy Vagy Vags Vagy Vag )
CH D (U,H ?)11) (U U] UJ U] Uj U]) 2 D (UH 7)11) (V] Vv‘7 V‘7 V] V] V])

ijEVI1 ije€11
which depends only on U;; and V;;. Hence, we obtain C12 — C11 = 0 which is again a particular
case of the Serendipity relations.

As a conclusion, and following [1], the reduced element is a member of the serendipity family
and the diagram of its polynomial space is

1
u v
U2 uv ’U2
U3 ’LL2’U U’UZ 7)3
u4 u3v u2v2 U’U3 ’U4
u5 U4’U u3v2 23 UU4 ’U5
u5v u3v3 UU5

where we have the monomials of P° and the monomials of degree d + 1 = 6 with one variable
linearly involved, however, plus u3v3. As compared with the polynomlal space of the complete
element (the space Q°), we miss the 12 monomials among the u’v’s with i + j > 6 apart u’v,

w33 and wvd.

37



Remark 1: An alternative solution can be found by selecting, as internal nodes, the other
possible symmetric configuration (11,41, 44, 14).

To solve the Serendipity system, we give here the main lines of the solution (see [20] for a
detailled description).

First of all, we write the 11 relations related to the lines, for example, the first results from
Ca1 — C11 = C31 — C9; using relations like (41), it holds

(R1) 12q(Az1) + 4q(Aro) + 4q(Asp) + 4q(Azz) + 4q(A12) — 6(Az) — 8q(Az1) — 6¢(As2)

—8q(A11) — q(Aoo) — q(An2) + 2q(Ao1) — q(Aso) — q(Asz) + 2q(Asr) = 0.

With the 10 other equalities, we obtain a system where the matrix is a 11 x 12 matrix. Then we
consider the augmented matrix made up of the previous with an additional column representing
terms independent of the unknowns, therefore a 11 x 13 matrix. The rank of this augmented
matrix is 10 (as 2 relations relative to the columns are not yet considered). An LU decomposition
of this matrix reveals a line of zeros apart from the entry corresponding to the augmented column.
In order to have a solution, this last entry must be null from which we have a dependency between
the four (central) unknowns (indices 22, 32, 23, 33), we find

1 . N ~ 1 - 1 - 1

5!1(1400) —q(A2) + q(Aso) — gq(AE)o) - gq(A05) + EQ(A55) + (I(A25) - Q(ASS)

— 5q(Az2) + 5¢(As2) — q(Ao2) + q(As2) + 5q(Ass) — 5q(Aaz) + q(Agz) — q(As3) =0.  (42)

Therefore, assuming the above condition and using the 10 other equations of the above lines
completed by the 2 equations in the v directions, we obtain a 12 x 12 matrix of rank 12. Using

Maple, we obtain the solution. It is as follow (for short read aij like q(A;;):
all = 4/5a10 + 22/45a30 — 14/9a32 — 38/45a20 + 22/9a22 — 74/225a00 — 38/45a02 + 4/5a01

—26/225a50 — 2/45a52 + 1/5a51 + 10/9a33 — 14/9a23 + 22/45a03 — 2/45a53 — 2/45a35
+1/5a15 — 2/45a25 — 26,/225a05 + 1/225a55
a2l = 4/15a30 — 4/3a32 + 8/3a22 — 8/75a00 — 16/15a02 + 3/5a01 — 4/25a50 — 4/15a52
+2/5a51 + 4/3a33 — 2a23 + 2/3a03 — 4/15a35 + 1/3a25 — 7/75a05 + 2/75a55
a31 = 3/5a30 — 1/3a32 — 1/3a20 + 5/3a22 — 1/25a00 — 13/15a02 + 2/5a01 — 17/75a50
—7/15a52 + 3/5a51 + a33 — 5/3a23 + 3/5a03 + 1/15a53 — 4/15a35 + 1/3a25
—7/75a05 + 2/75a55
adl = —4/9a30 + 4/9a32 + 4/45a20 + 4/9a22 — 8/225a00 — 4/9a02 + 1/5a01 + 4/5a40
—92/225a50 — 4/9a52 + 4/5a51 + 4/9a33 — 8/9a23 + 16/45a03 + 4/45a53 — 4/9a35
+16/45a25 + 1/5a45 — 17/225a05 — 8/225a55
a42 = —4/5a30 + 4/3a32 + 2/5a20 — 2/3a22 — 1/25a00 + 1/15a02 + 3/5a40 — 4/25a50
+4/15a52 — 8/15a35 + 4/15a25 + 2/5a45 — 2/75a05 — 8/75a55
a43 = —8/15a30 4 4/15a20 — 2/75a00 + 2/5a40 — 8/75a50 + 4/3a33 — 2/3a23 + 1/15a03
+4/15a53 — 4/5a35 + 2/5a25 + 3/5a45 — 1/25a05 — 4/25a55
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add = —4/9a30 + 4/9a32 + 16,/45a20 — 8/9a22 — 17/225a00 + 16/45a02 + 1/5a40 — 8/225a50
+4/45a52 + 4/9a33 + 4/9a23 — 4/9a03 + 1/5a04 — 4/9a53 + 4/5a54 — 4/9a35 + 4/45a25
+4/5a45 — 8/225a05 — 92/225a55
a34 = —4/15a30 + a32 + 1/3a20 — 5/3a22 — 7/75a00 + 3/5a02 + 2/75a50 + 1/15a52 — 1/3a33
+5/3a23 — 13/15a03 + 2/5a04 — 7/15a53 + 3/5a54 + 3/5a35 — 1/3a25 — 1/25a05 — 17/75a55
a24 = —4/15a30 + 4/3a32 4 1/3a20 — 2a22 — 7/75a00 + 2/3a02 + 2/75a50 — 4/3a33 + 8 /3023
—16/15a03 + 3/5a04 — 4/15a53 + 2/5a54 + 4/15a35 — 8/75a05 — 4/25a55
ald = 1/5a10 — 2/45a30 + 10/9a32 — 2/45a20 — 14/9a22 — 26/225a00 + 22/45a02 + 1/225a50
—2/45a52 — 14/9a33 + 22/9a23 — 38/45a03 + 4/5a04 — 2/45a53 + 1/5a54 + 22/45a35
+4/5a15 — 38/45a25 — 74/225a05 — 26/225a55
al3 = 2/5a10 + 4/15a30 — 8/15a20 — 8/75a00 — 2/75a50 — 2/3a33 + 4/3a23 + 4/15
a03 + 1/15a53 + 2/5a35 + 3/5a15 — 4/5a25 — 4/25a05 — 1/25a55
al2 = 3/5a10 + 2/5a30 — 2/3a32 — 4/5a20 + 4/3a22 — 4/25a00 + 4/15a02 — 1/25a50
+1/15a52 + 4/15a35 + 2/5a15 — 8/15a25 — 8/75a05 — 2/75a55 . (43)

It is clear that this solution is mot symmetric. To retrieve a full symmetry, we will use Rela-
tion (42) and more precisely this relation seen as

1 1 1 1 1 1 1 1
- ~q(20) — = — — S — —q(25) + =q(35
0 25(1(00) + 5(1( 0) 561(30) + 25(1(50) + 259{(05) 25(1(55) 5(1( 5) + 5(1( )

+q(32) — (22) + 2q(02) — 2a(52) +q(2) — (33) — 2al03) + 545 (44)

where the coefficients are depicted in the following diagram:

i/25 o -1/5 1/5 0 -1/25b

0 0
-1/5 1 [33] 1/5
1/5 -1 1 -1/5
0 0

-1/25 0 1/6 -1/6 0 1/25

The process is made up of two steps. First, we establish the symmetry for indices 11,14,41, 44
and then for the other indices. We have:

all = 4/5a10 + 22/45a30 — 14/9a32 — 38/45a20 + 22/9a22 — 74/225a00 — 38/45a02 + 4/5a01

—26/225a50 — 2/45a52 + 1/5a51 + 10/9a33 — 14/9a23 + 22/45a03 — 2/45a53 — 2/45a35
+1/5a15 — 2/45a25 — 26,/225a05 + 1/225a55
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S — — = — — R — — —a?2
+a{ 5% a00+5a20 a30+25a50+25a05 25a55 5a 5+ a35

1
+a32 — a22 + 1a02 — 1a52 + a23 — a33 — 1(103 + —ad3 ; ,
5 5 5 5
and
adl = —4/9a30 + 4/9a32 + 4/45a20 + 4/9a22 — 8/225a00 — 4/9a02 4+ 1/5a01 + 4/5a40

—92/225a50 — 4/9a52 4 4/5a51 + 4/9a33 — 8/9a23 + 16/45a03 + 4/45a53 — 4/9a35
+16/45a25 + 1/5a45 — 17/225a05 — 8 /225055

1 1 1 1 1 1
+ﬁ{ a00—|—5a 0 5a30+25a50+25a05 25a 5a +5a

1 1 1 1
+a32 — a22 + ga02 — 5a52 + a23 — a33 — gaOS + 5a53} .

Since 11 must see 00 as 41 sees 50 (and wice versa), we obtain the first relation
a+p=2.

From this relation the other symmetries hold. Up to now, we have a family of solutions (e.g. an
infinity number of solutions) depending on one parameter, «, which gives the symmetry for the
four above indices. As an illustration, we obtain the following diagram for index 11 (with the
scaling factor ﬁ and a denoted by a ):

-26+9a 45 -10-45a -10+4ba 0 1-9a
0 0
110-45a -350+225a 250-22ba -10+45a
-190+45a 5560-226a  -350+22ba -10-45a
180 [11] 45
-74-9a 180 -190+45a 110-45a O -26+9a

Second, we consider the symmetry for indices 21,31,24,34 and 12,13,42,43. We have
a2l = 4/15a30 — 4/3a32 + 8/3a22 — 8/75a00 — 16/15a02 + 3/5a01 — 4/25a50 — 4/15a52
+2/5a51 + 4/3a33 — 2a23 4+ 2/3a03 — 4/15a35 4+ 1/3a25 — 7/75a05 + 2/75a55

1 1 1 1 1 1 1 1
——a00 20 — —a30 + —ad0 + -—a05 — —add — —a2d 35
—1—7{ 25@ +5a 5a +25a —|—25a 25a 5a +5a
5
al2 = 3/5a10 4 2/5a30 — 2/3a32 — 4/5a20 + 4/3a22 — 4/25a00 + 4/15a02 — 1/25a50
+1/15a52 + 4/15a35 + 2/5a15 — 8/15a25 — 8/75a05 — 2/75a55

1 1 1 1
+a32 — a22 + gaOQ — 5a52 4+ a23 — a33 — ga03 =+ a53} ,
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1 1 1 1 1 1 1 1
0 —— —a20 — = — — S — — —a?2 -
+ { 25@00+ 5a 0 5a30+ 25a5O+ 25a05 25@55 5a 5+ 5a35

1 1 1 1
+a32 — a22 + -a02 — —-ad2 + a23 — a33 — -a03 + -ab3 ; |,
5 5 5 5
al3 = 2/5a10 + 4/15a30 — 8/15a20 — 8/75a00 — 2/75a50 — 2/3a33 + 4/3a23 + 4/15
a03 + 1/15a53 + 2/5a35 + 3/5a15 — 4/5a25 — 4/25a05 — 1/25a55

ad— L a00+ 2a20 - Laso+ Las0+ La0s— Lass— La25+ La3s
g5 WV T RSN T AN T gg VT g a0 T pp @90 T g Ao T

1 1 1 1
+a32 — a22 + ga02 — Sa52 + a23 — a33 — 5@03 + 5a53} .

From this, we derive two additionnal relations to achieve the symmetry:
4
W—ézg and 6+A=0,

from the last relation, the symmetry is already verified for indices 12 and 13. Hence, d = A =0
and thus v = %. Now, for these set of indices, we have a unique solution (with no parameter).
As an illustration, we obtain the following diagram for index 21 (with the scaling factor %)

-3 0 5 0 0 -2
0 0
30 -50 O 20
-60 100 O -40
45 [21] 30
-12 0 20 0 O -8

Among the monomial of degree 5, the obtained Serendipity family includes u®v and wuv®.

Thus, monomials uv?, w3v3, u?v? are missing. In order to fix «, the space must be enriched

with one of the previous monomials. For symmetry reasons, the only choice is to include the
monomial ©?v? in the polynomial space.

It is easy, by means of instanciations, to see that
5% x ubv® = {pf + 8pfy + 27pf5 + 64pf, + 125p§5} + 2° {p5; + 85y + 2755 + 64p5, + 125p55}

+3% {p§) + 8§y + 27pSs + 64p5, + 125p55} + 4% {p§; + 8pla + 27ps + 64pG, + 125pfs}
+5° {p§) + 8Py + 2TpSs + 64p§, + 125pEs}

then, following Relation (16), we have (as for p{;)
50 x uv® = {p§; + 125p55} + 2% {8psy + 2755 + 125p55}

+3% {8p5y + 27pSs + 125p55+ + 4° {125p55} + 5° {p§; + 8psy + 27pss + 64psy + 125p5s} + ...,
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and in terms of p{; and omitting the factor, we only have the contributions of
{1 + 126pis} +2° {8p5; + 27p5; + 125p5;}

+3% {8p5, + 27p§s + 125p55} + 4° {125p55} + 5° {p§, + 8pky + 27pEs + 64pE, + 125ps}

which, in terms of the coefficients, reads
{1— 125043} +2° {—8a3; — 27as3 — 12503}

+3% {—8adh — 27agh — 125041 } +4° {—125a4t } +5° {—ai] — 8aty — 27ash — 64at; — 1250t }

win

now, we replace the coefficients to obtain an equation in parameter «, which results in o =
and this value is also the right value to cancel all the contributions for the other (similar) indice

w0

To complete the proof, we check that index 21 has the same property so that, by symmetry,
w33 is in the space. To this end, we compute the coefficient

2% {1 — 8a3) — 27033 — 12503}
+3% {—8a3) — 2703} — 125031 } +4° {—125a3 } +5° {—ad] — 8ad) — 272l — 64a2) — 12502l } |
where there is no parameter but which is null as expected (so it is for the other (similar) indices).

The update of the diagram for index 11 gives (with the scaling factor 4—15)

-4 9 -8 4 0 -1
0 0
16 -40 20 4
-32 80  -40 -8
36 [11] 9
-16 36 -32 16 o -4

and we have the previous (unchanged) diagram for index 9;. Since the shape functions satisfy
the same relations, we find all the coefficients and, for the type functions, we have the following

table:

poo(u,v) | pro(u,v) | p2o(u,v) | p2a(u,v)
o || -16/45 | 4/5 | -32/45 | 16/9
wor || -12/75 0 20/75 | 100/75
wa | -8/75 0 0 0
wi || -4/45 0 16/45 | -8/9
o | -3/75 0 30/75 | -50/75
w43 -2/75 0 20/75 0
o || -1/45 0 1/45 479
wa || -2/75 0 0 0
wa | -3/75 0 5/75 | -50/75
wia || -4/45 1/5 | -8/45 | -8/9
w3 | 8/75 3/5 | -40/75 0
wis | <1275 | 3/5 | -60/75 | 100/75
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kl

Coefficients for the repartition, wy; stands for a; i

Using these coefficients, we have the reduced shape functions fully defined via (16), see
hereafter.

Then the reduced element, seen as a patch reads
v) = > piju,v) A,
(]

where ij denotes the indices of the (4) vertices, the (16) edge nodes and the (4) internal nodes
of the reduced element, i.e., 24 indices. We replace again the p;;s by means of the p;;8, then,
with evident notations, we have

M (u,v) = Z{pmuv —l—Zaleiluv}Aij,

with, for example, a I and a?!, the coefficients in the above diagrams. Then, this reads also

13 ’
Z ng u,v A’U + ZZOK ZA,]pkl U 'U Z pl] u,v A’Lj + Zzaz]Aijkl U‘ ’U)
i ij

therefore let

Akl = E af}A”
]
again with 24 indices, so that the patch is

= pfi(u,v) Ay,
ij

but now with 36 indices. In other words, we have invented the nodes Aq1, Ao1, ... with which
we can define a complete element fully equivalent to the reduced element. As already seen, a
complete element is equivalent to the Bézier patch

5
> 2 BlwB)P;,
i=0,5 j=0,5

from which we obtain Piq, Poq, ....

In practice. The 24-node quad is easy to analyse. Given its nodes, we find its edge control
points by the formulae, here for edge AggAsg,

—T77Ago + 300A19 — 300Asg + 200A39 — 75 A0 + 12459

Py = 60 ;

269A00 — 1450A1¢ + 2950A99 — 2300A30 + 925440 — 154 A5

P20 = 240 )
—154Ap0 + 925415 — 2300 A0 + 2950A39 — 1450A40 + 269 A5
P3y = 510 )
P 12A00 — 75A10 + 200A55 — 300430 + 300449 — 77 Aso
40 = .
60

Then we compute Py1, Po1, P31, P41, ..., P12 by solving the corresponding system. Then, just use
Relation (15) to have the control coefficients of the jacobian.
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The shape functions. With the values of af} and using Relation (16), it is easy to obtain the
explicit expression of the shape functions. Indeed, only four of them must be made explicit since,
for symmetry reasons, the other functions are evident to obtain. Therefore, we use Relation (10)
to express pgo(u,v), pfy(u,v), p5o(u,v), pSe(u,v) and pf;(u,v),ps; (u,v), ..., pfy(u,v) and then
compute poo(u, v), pio(u, v) pao(u, v) pee(u,v), the four type functions, we find

1 [ poo(u,v) = (v — 1)(u— 1)(72 — 750u — 750v + 2625u? + 1250uv + 262507
—3750u? — 1250uv — 1250uv? — 375002 4 1875u* + 1250u?v? + 18750v%)

2 || pro(u,v) = Bu(2 — 5u)(3 — 5u)(4 — 5u)(1 — u)(1 — v)

3 || p2o(u,v) = Bu(5u — 3)(u—1)(v — 1)(12 — 75u + 25v + T5u? — 2507)

21 || pa2(u,v) = E2uv(50 — 3)(v — 1)(5u — 3)(u — 1)

’ Type shape functions of one serendipity 24-node quad of degree 5.

Observe how simple is pjp and the formal beauty of the three other functions. By symmetry
(u—1—wu,(u,v) = (v,u),etc.), the full list is obtained, as examples, we have:

p3o(u,v) = p2o(l —u,v) , por(u,v) = pro(v,u),
ps1(u,v) =por(1 —w,v) , pis(u,v) = pio(u, 1 —v),ete.

This concludes the case of the 24-node quad.

Reduced quads of higher degree? In [1], we find serendipity quads and hexes of arbitrary
order, but, as seen for the previous element, they are not fully symmetric as can be shown in
the following table (for quads only) where we give the dimension of space P¢, namely w,
the dimension of the serendipity space, the number of internal nodes and the number of nodes
to be added to recover a fully symmetric configuration.

’ d H dim(P9) ‘ dim(P?) + v + uv? ‘ #nodes ‘ + ‘
2 6 8 0 0
3 10 12 0 0
4 15 17 1 0
5 21 23 3 1
6 28 30 6 2
7 36 38 10 2

Dimension of the polynomial spaces, number of internal nodes and number of ”missing” nodes.

Following what we did for the 24-node quad, we think that, formally speaking, the same
story applies to higher order. Nevertheless, say at order 6, the constants that can be found
involve a polynomial of degree 2 (due to the D* derivatives) and thus, for a given sub-template,
one needs to consider a combination of 3 consecutive values. To achieve a full symmetry, we
think that we can invent the necessary nodes in the same way (by means of a LU factorization).

As a consequence, and, a fortiori, for higher order elements, the construction seems to be
fastidious and we stop here our discussion.
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6 Tridimensional complete Lagrange elements

Formulae (10) and (11) extend to (complete) hexahedra and (complete) simplices and give the
shape functions.

6.1 Complete Lagrange tetrahedra or hexahedra of degree d

Tetrahedra of degree d. We use the definition (12) to discuss the case of a degree d tetra-
hedron, so we have

© =0(u,v,w,t) = Z ijkl(u,v,w,t)]%jkl , (45)
i+j+k+l=d
where the P;jis are the control points. We repeat what we did for the triangle of degree d to
obtain the jacobian polynomial, we find

j(u,v,w,t) = Z B?JKL(”avvwvt)NIJKLa
I+J+K+L=3(d—-1)

where ¢ = 3(d — 1) and the coefficients Ny are

d—1 d—1 d—1

C & &
3 i1j1k1ls “iagakala Tigjoksls 1000
Nijkr = d § |A A

0010
c? i1+1,51k1l A
|i|=I,|j|=J,|k|=K,|l|=L IJKL

i3+1,73ksls

)

22+1 J2kale

(46)
where ”L| =141 +i9+1i3,...and with i1 +j1 +k1+li =ia+jo+ ke+lo=i3+jstks+ils=d—1
and with the following A:

_ - _
1000 0010 0010
Ak = PigeiPi-1 1kt Aijer = PigriPi-1k+10 and - Ay = PP j ki1 -

(g+1)(g+2)

The jacobian is a polynomial of degree ¢ = 3(d—1), the number of control coefficients is 3

(dX(g+1) + (d;l)d_i_“.):}.

and the number of determinants involved in these coeflicients is

Hexahedra of degree d. We use the definition (14) to discuss the case of a degree d hexa-

hedron, so we have
o) = Y 3 Y BB BLw) P )
i=0,d j=0,d k=0,d

and, the jacobian polynomial has the form
Twvw) = 3, > > Bi(w)Bj)B(w)Ni,
I=0,q J=0,q K=0,q

where ¢ = 3d — 1 and the coefficient Njjgs are

ci- 1cd cd chcdted of of ot
_ 100 010 001
Nijg = d E E E Cq - 02q : ‘Anh k1 A12]2 ko AZ3J37 |
li|=1 |j|=J |k|=K 7 K

SE— SN (48)
with Azljok[;) = Pijr Pt jk Azjk = Piji P j11xand A?})kl = PijiPijry1 s
where M =141 4+ 13 + i3, ... and with i1 =0,d — 1,40 = 0,d,i3 = 0,d,51 = 0,d,j2o =0,d — 1,53 =
0,d,k;y = 0,d,ko = 0,d,k3 = 0,d — 1. The jacobian is a polynomial of degree ¢ x ¢ X ¢ =
(3d —1) x (3d — 1) x (3d — 1) and the number of control coefficients is (¢ + 1)3.
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7 Tridimensional incomplete Lagrange elements

First of all, formulae (16) and (17) extend to hexahedra and simplices and show how the re-
duced shape functions are related to the complete shape functions. Then, some of the complete
Lagrange elements have their related incomplete elements. The method to constructing those
reduced elements is basically the same, e.g. by means of Taylor expansions while taking into
account what polynomial space we like to have.

7.1 Tetrahedra

The order 3 tetrahedron. The complete element has 20 nodes with one node per face and
no node inside the volume. We propose to apply to the faces what we did for the order 3 triangle.
In other words, we apply Relation (18), to the faces. For the triangle, we had

12q(A1nn) +2 ) q(Aigr) =3 > q(Air) =0,
ijkeV ijkeE

and this leads to four relations, for instance for face ¢ = 0, we simply have (with evident
notations)

12g(Aino) +2 Y a(Aire) =3 D a(Aijro) =0,

ijkl€Vi=0 ijkl€EL—0

and similar relations for the other faces where the template is centered at A1101, fllon, 1210111 for
the faces w = 0,v = 0 and u = 0, respectively. Therefore we have a system of 4 equations.

Using the extension of Relation (17), we look for reduced functions, polynomials like

pijkl(u’ v, w, t) = pgjkl(uv v, W, t)+0[p§110(u, v, W, t)+ﬁp5101 (u’ v, W, t)+7p‘1:011(u, v, w, t)+5p(c)111 (uv v, W, t) :

Due to the symmetry, there is only two type shape functions, p3ooo(u, v, w,t) and pe1go(u, v, w, t).
In the four above equations, we replace the generic function ¢ by psgog, then we immediately
have a = =v= —% and d = 0, the face opposite to Asggp has no contribution to pszggg.

To define po199, we use the same method and we find o = 8 = % and v = § = 0, the two
faces opposite to edge 12130001210300 have no contribution to p21go.

The shape functions. With the values of a, 8,7 and ¢ and using Relation (17), extended to
three dimensions, it is easy to obtain the explicit expression of the shape functions. Indeed, only

two of them must be explicited since, for symmetry reasons, the other functions are evident to
obtain. Therefore, we use a relation like Relation (11) to express p§ygo(u, v, w,t), p§100(u, v, w, )

and pill(}(“? v, w, t)apillo(uv v, w, t)a pill[)(uﬂ v, W, t)apillo(u’ v, w, t)? and then compute pgooo(u, v, w, t)
and pa100(u, v, w,t), the two type functions, we find

1 2 2 2 2
p3000(u, v, w, t) = §u(2u — buv — buw — Sut + 2v° — Svw — but + 2w — Swt + 2t7) ,
1
or psooo(,y,2) = 5(1 -2~y —2)(2 -9 —9y -9z + 922 + 9zy + 9z2z + 9y + yz + 92%)
9
and  paioo(u, v, w,t) = Zu’u(élu —204+w+t),

9
or paoo(,y,2) = (1 -2 —y—2)z(4 62— 3y —3z).

By symmetry (z — 1 — z, (u,v,w,t) = (v,u,w,t),etc.,in x or u), we have the full list.
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l-z—-y—2)E—z—y—z+ay+azt+yz+a’+y>+2?)
(1—2z—y—2z)z(4— 6z —3y—3z2)

1 || p3ooo(,y,2) =
p2100(337 Y, Z) =

e G]Re|

’ Type shape functions of the 16-node tetrahedron of degree 3. ‘

In practice. The 16-node tetrahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the triangle of degree 3) and then we compute
P1110, P1101, PlOlla P0111 using, by face, the formula of the triangle. Then, with these points, the
element reads

0(u7v¢w¢t) = Z B?jkl(u7v7w7t)Pijkl )
i+j+h+1=3

and it is just required to use Relation (46) to have the control coefficients of the jacobian.

This concludes the case of the 16-node tetrahedron.

The order 4 tetrahedron. The complete element has 35 nodes with three nodes per face
and one node inside the volume. We propose to apply to the faces what we did for the order
4 triangle. In other words, we will apply Relations (22) to the faces of the element to deal
with their three nodes and to account for the volume node, we will apply Relation (26) to four
adequately defined pseudo-faces. Therefore, using Relations (22). e.g.,

15q(As11) — 15q(A121) = —2q(A400) + 2¢(Aoao)

—5q¢(Ay30) — 2q(A103) + 5q(Az10) + 3q(A202) + 3q(Az01) + 2¢(Ao13) — 3q(Aoz1) — 3¢(Ag22)
and R R R X
15q(A211) — 15g(A112) = —2q(Aa00) + 2q(Apoa)

—2q(A130) — 5¢(A103) + 3q(As10) + 3q(A220) + 5q(Az01) + 2q(Aoz1) — 3q(Ag22) — 3¢(Ans),
we mechanically obtain, for the face ¢ = 0, the two following equations

(R1) 15q(Aa110) — 15q(A1910) = —2q(As000) + 2¢(Aoa00)

—5q(A1300) — 2q(A1030) + 5q(Az100) + 3q(A2020) + 3¢(Az010) +2¢(Ao130) — 3¢(Aoz10) — 3¢(Ag220) ,

and
(R2) 15q(Aa110) — 15q(A1120) = —2q(As000) + 2¢(Agoa0)

—2q(A1300) — 5q(A1030) + 3q(Az100) + 3q(A2200) + 5¢(Az010) + 2¢(Aoz10) — 3¢(Ao220) — 3¢(Ao130) ,

which correspond to the following template:

0040
1030 0130
2020 1120 0220
3010 2110 1210 0310

4000 3100 2200 1300 0400 (t=0)
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The same applies (after a permutation in the indices to account for the templates in hand) to
faces w = 0,v = 0 and v = 0, resulting in 8 equations.

To complete this system, we have to find the equations giving the relations between the
volume node, A1111, and the nodes in the boundary of the element. To this end, we consider the

pseudo-faces defined by the planes t = i, w = %, v = % and u = i and we use Relation (26) in

the corresponding templates. As an example, the template for ¢t = i is depicted in the following
diagram:

0031

1021 0121
(t=1/4)
2011 1111 0211

3001 2101 1201 0301

and the relation

Con = 12q(Aon) +2 > q(Ain) =3 D qlAi).,

17k€V211 ijk€€a11

reads for the above template (with evident notations)
Crini—t = 12¢(A1111) + 2¢(Aso01) + 29(Aoszo1) + 2q(Aooz1)

—3q¢(A2101) — 3q(A1201) — 3q(Ao211) — 3¢(Aoi21) — 3¢(A1021) — 3¢(As2011) -

Similarly, we obtain 3 more equations related to the three other pseudo-faces. To summarize,
we have 12 equations, meaning that we have to consider the volume node as a node of the reduced
element, in other words, we have only a chance of canceling the 12 face nodes.

In [19], we give the explicit reading of the 12 x 12 matrix of the system and we see that
the determinant of this matrix is null. To better understand this point, using the extension of
Relation (17), we look for reduced functions, polynomials like

mnop ¢

pijkl(ua v, w, t) = pfjkl(ua v, W, t) + Z aijkl pmnop(“? v, w, t) )

mnop

we fixe index ;511 =4000 and we write the 12 corresponding equations. Omitting index ™", we
find the following relations:

(R1) 15a9110 — 151210 = —2
(R2) 15a9110 — 151120 = —2
(R3) 1509101 — 1501201 = —2
(R4) 15a9101 — 151102 = —2
(R5) 1509011 — 1501021 = —2
(R6) 1502011 — 1501010 = —2
(RT) 1500211 — 1500121 = 0
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(RS) 150{0211 — 15040112 =0

(R9) — 3a2101 — 31201 — 30211 — 3121 — 31021 — 3a2011 + 3210 + 3120 — 1200110 = 2

(R10) — 3a2110 — 31210 — 30211 — 30112 — 3012 — 32011 + 3201 + 3ai102 — 1202101 = 2
(R11) — 3a2110 — 31120 — 30121 — 30112 — 31102 — 3a2101 + 30021 + 3012 — 1202011 = 2
(R12) — 3ai1210 — 31120 — 3021 — 31012 — 3102 — 3ai1201 + 30121 + 3ao112 — 1200211 = 0.

These relations imply that

1
(19) @1102 + @o112 + Q1012 + Q1120 = R
together with

which is impossible. As a conclusion, we don’t find a solution, using our method (Taylor), there
is no way to constructing a reduced order 4 tetrahedron covering space P3. This negative result
is not a surprise since we had the same conclusion for the order 4 triangle.

As we did for the triangle, we limit our quest so as to only cover the space P2. The conclusion
is similar, we don’t find a solution since we have one inconsistency with the ”central” node. The
order 4 tetrahedron is too rigid.

Therefore, we stop here our study about tetrahedra while the question to know if this negative
issue holds for higher order tetrahedra remains.
7.2 Hexahedra
The idea is the same, we extend to the faces and, if needed, to some pseudo-faces, the relations

obtained for the quadrilaterals.

The order 2 hexahedron. The complete element is a 27-node hex with one node per face
and one node in the volume. We consider Relation (30), e.g.,

4g(An) + ) a(Aiy) =2 q(Ai) =0,
ijeV ije€
and we write this relation for the six faces of the element. The face w = 0 is depicted in the
following diagram

020 120 220
010 110 210

000 100 200

and we have a first equation

46](1‘1110)4'{@/(1‘1000) +q(Az00) + q(Az20) + Q(Aozo)}—2 {Q(AIOO) + q(A210) + q(A120) + Q(Aom)} =0.

By applying the same relation to the five other faces (and the appropriate templates in terms
of indices), we obtain five more equations. Now we provide a relation between the central node
(flln) and the nodes on the boundary of the element by considering the following template
corresponding to the plane u = % and the pseudo-face so defined
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102 112 122
101 111 121

100 110 120

and then we add a relation involving the central node

4Q(A111)+{Q(A100) + q(A1g2) + q(A120) + Q(A122)}—2 {Q(lewl) + q(A121) + q(A110) + Q(z‘i112)} =0,
(49

~—

and those 7 relations define the serendipity property of the element.

Then we write the values at the face nodes in this last relation by their expressions in the
their own face, it results equation

4q(A111) + Z q(Aijr) — Z q(Aiji) =0, (50)
ijkeV ijke€
which links the central value with the value at the vertices and the edge nodes.

The reduced shape functions follow the form of Relation (16), namely we have
pijk(u7 v, w) = pijk;(u? v, w) + Z aéﬁnl’fmn(uv v, w),

Ilmn

and these functions satisfy all the above equations. For symmetry reasons, there is only two
type functions so we fix ijk = 000 and ¢jk = 100 to obtain the coefficients of repartition from
the initial system. The solution is

1
110 _ 101 _ 011 _ 111 _
Qop0 = ®po0 — %00 — Xo00 — 1
1o 101 1L m 1L

and Q190 = Y100 = 5 and A100 = Z N

one can observe that the ”corner” shape function only depends on the complete shape functions
of its three incident faces and the central one. For an edge shape function, only the central
function and the functions of the two incident faces contribute.

With the values of the coefficients and following the generic form of the functions, we have

1| gooo(u,v,w) = (1 —u)(1—2v)(1 —w)(l —2u—2v—2w)
9 || qroo(u,v,w) =4u(l —u)(1 —v)(1 —w)

Type shape functions of the 20-node hexahedron of degree 2. ‘

In practice. The 20-node hexahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the quad of degree 2) and then we compute the
control points of the face using, by face, the formula of the quadrilateral. Then, with these
points, the element reads

Ou,v,w) = > > > Bi(u)Bj(v)Bi(w)Pi,

i=0,2 j=0,2 k=0,2
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from which we compute the last control point, P11, we have
5 3 1
P = —¢ Z Pije + 7 Z Fijk = 5 Z Piji
ijkey ijkel ijkeF

, P11 is written in terms of the vertices, the control points of the edges (other than the
vertices) and the control points of the faces (other than all the previous). To end, it is just
required to use Relation (48) to have the control coefficients of the jacobian.

About the polynomial space of the reduced element. The diagram of the polynomial

space is
1
U vow
w? oww uw v ovw w?
v dw wow w? Pw ww?® vw?
2 2 2

u-vw uv-w uvw

where we have space P?, the monomials of degree d + 1 = 3 with at least one variable linearly
involved and the the monomials of degree d+2 = 4 with two variables linearly involved, therefore
20 monomials.

This concludes the case of the 20-node hexahedron (note that this element can be defined
by means of a transfinite interpolation, [23]).

The order 3 hexahedron. The complete element is a 64-node hex with four nodes per face
and eight nodes in the volume. The number of nodes we want to cancel is 32 (6 x 4 + 8 = 32).
We apply to the nodes of the faces what we did for the quadrilateral of degree 3 where we have 4
equations, therefore this lead to 24 equations. To have 8 equations more we consider two planes
(for instance u = % and u = %) and consider the corresponding templates. As a result we have
32 equations for 32 unknowns. We proceed these equations as we did in the previous element
so as to find the links between the volume values (of a generic function) and the values on the
boundary (vertices, edge nodes and face nodes) of the elements.

The reduced shape functions follow the form of Relation (16), namely we have
pijk(u?vaw) pz]k(u v, w + Zai;rllfnplmn(u v w)

Imn

and these functions satisfy all the above equations. For symmetry reasons, there is also only
two type functions so we fix ijk = 000 and ijk = 100 to obtain the coefficients of repartition
from the initial system. The solution, [20], is given by means of a table and some diagrams. The
coefficients for ggpp are listed in the following table (where we omit the index ggp):

110 — _% 20— 2 [0 =2 [ 20 __1
Q01 — _4 021 _ 3 012 _ 3 022 _ 1

9 o e @
Q01 — _4 o201 — 3 Q102 — 3 Q202 — 9
9 9 9 9
122 _ 4 22 _ 2 1210 _ 8 21 _ _ 4
Q=T || = Ty || = 27 o =7
a2 — _8 | g212 — _ 4 || g1 16| 211 %
~ o7 ~ o7 Y ~ 27

As for the nodes in the plane w = 0, the coefficients are




120 220 . -2/9 -1/9
110 210 . -4/9 -2/9

[000] . . . [000]

in the plane w = %, we have

021 121 221 . -2/9 -8/27 -4/27
011 111 211 . -4/9  -16/27 -8/27
[000] 101 201 . [000] -4/9 -2/9

and in the plane w = %, we have

022 122 222 . -1/9 -4/27 -2/27
012 112 212 . -2/9 -8/27 -4/27
[000] 102 202 . [000] -2/9 -1/9

one can observe the perfect symmetry and the mechanism of construction of these coefficients
and see that all the nodes contributing to gggo are located on the planes w = 0, w = % and

_2
w—3.

The coefficients for qig9 are depicted in the following diagram:

102 112 122 . 1/3 2/9 1/9
101 111 121 . 2/3 4/9  2/9
[100] 110 120 . [100] 2/3 1/3

again, one can observe the perfect symmetry and the mechanism of construction of these coef-
1

ficients and see that all the nodes contributing to qioo are located on the plane u = 3.

With the values of the coefficients and following the generic form of the functions, we have

I-uw)(l-v)(I-w)(z—v—w—u+u®+0v?+uw?)
w(l—u)(2 —3u)(1 —v)(1 —w)

L || qooo(u,v, w) =

9
2
CI100(U7 v, w) = %

’ Type shape functions of the 32-node hexahedron of degree 3. ‘
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In practice. The 32-node hexahedron is easy to analyse. Given its nodes, we find its edge
control points by the formulae (see the case of the quad of degree 3) and then we compute the
control points of the face using, by face, the formula of the quadrilateral. Then, with these
points, the element reads

i=0,3 j=0,3 k=0.3

from which we compute the internal control points. To this end, we first define the internal
nodes and then we solve the system

111
A = 9(§7 3 g)

2 2 2
Ao =0(=,=, =
222 (3) 37 3) )
from which we compute Pji1, ..., Pa22. To end, it is just required to use Relation (48) to have

the control coefficients of the jacobian.

About the polynomial space of the reduced element. The diagram of the polynomial
space is

1
u v ow
’LL2 uv  uw U2 vw ’U}2
U3 u2v u2w uv uvw uw ’U3 ’0211) U’LU2 ’UU)3
’U,BU uw  uvw uv-w uvw2 ’U/US U’LU3 v3w UU]S
u3vw uv3w ’LLUU)3

where we have space P3, the monomials of degree d + 1 = 4 with at least one variable linearly
involved and the the monomials of degree d+2 = 5 with two variables linearly involved, therefore
32 monomials.

This concludes the case of the 32-node hexahedron.

Higher order hexahedra? The complete element of degree 4 is a 125-node hex with 9 nodes
per face and 27 nodes in the volume. After [1], the serendipity hex has 50 nodes, therefore the
number of nodes in the volume is 50 — 8 — 12 x 3 — 6 x 1 = 0, so that we have no problem
with the symmetry in the volume. Now, the number of nodes to cancel is 6 x 9 — 6 + 27 = 75
because one node per face is retained (as for the quad of degree 4). Therefore we need to find 75
equations. The equations are obtained by using Taylor expansions in a number of planes and in
specific for those related to the 6 faces (and we return to the case of the bidimensional quad).

This seems to be rather technical and tedious so we don’t like to continue the story for higher
degrees, we just like to give some remarks about degrees greater or equal to 5.

The complete element of degree 5 is a 216-node hex with 16 nodes per face and 64 nodes in
the volume. Again after [1], the serendipity hex has 74 nodes, therefore the number of nodes in
the volume is 74 — 8 — 12 x 4 — 6 x 3 = 0, so that we have no problem with the symmetry in
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the volume. Now, the number of nodes to cancel is 6 x 16 — 6 x 3 4+ 64 = 142 meaning that 3
nodes per face are retained and we need to find 142 equations, or, if not, to retains a number
of nodes inside the volume. Nevertheless, as pointed out before in this paper and also in [15], if
one keeps the nodes distinct, it is not possible to arrange them in a completely symmetric way
when d > 5. This is why we proposed the quad of degree 5 previously discussed where we have
4 nodes per face, so that i) a symmetric arrangement is possible and i) there is no problem of
conformity from one element to its six neighbors (by face) when considering the case of hexes.
After this trick, we thing that it is possible to consider such elements as the others by using
Taylor expansions.

In conclusion, we were not capable (or we have not enough courage) to explicitly construct
reduced hexes with a degree greater than 3 and this concludes our discussion about the hexes
and gives room for further works.

7.3 Other elements

Among the elements in three dimensions, we also have the prisms (pentahedra) and the pyramids.
The complete prism of degree 2 has 18 nodes including one node per quadrilateral face. The
face are quad of degree 2 so that the ”central” node can be cancelled and we obtain a 15-node
prism, see [17]. For the degree 3, the 40-node prism, one can expect that the 12 nodes on the
quadrilateral faces (3 x 4) and the 2 nodes on the triangular faces (2 x 1) together with the 2
nodes in the volume can be cancelled.

Pyramidal elements are, somehow, controversial elements, for which we have various (and
possibly antagonist) definitions. In [18], we proposed a definition of a pyramid as being a
degenerated form of an hexahedron. With such a definition, one finds the counterpart of the
serendipity hexa of degree 2, a 13-node pyramid.

8 Conclusion

In this paper, we gave a detailed discussion about the construction of some reduced elements
and, this being done and given a reduced element in a mesh, we discuss the conditions that give
guarantees about its geometric validity. As seen, the main idea is, given such an element in a
mesh, to return to a complete element equivalent to this reduced one and then to apply what
we did previously for complete elements. It turns out that this leads to properly invent the
"missing” nodes and the "missing” control points.

Incomplete or reduced elements have a reduced number of nodes (typically the edge nodes are
those of the complete elements while the number of internal nodes is zero or smaller than that in
the complete element). The polynomial space is also of a smaller dimension as compared with the
complete space. These two facts make attractive the reduced elements since the corresponding
computational cost is, in turn, widely reduced. The following table gives some examples of the
reduction obtained by reporting the gain in terms of the number of nodes.

d 2 3 3 4 4 5 2 3 3 4
geometry quad | tria | quad | tria | quad | quad || hexa | tetra | hexa | hexa
#nodes 9 10 16 15 25 36 27 20 64 125
red. #nodes || 8 9 12 12 17 24 20 17 32 50
gain 1 1 4 3 8 12 7 3 32 75

% 11% | 10% | 25% | 20% | 32% | 33% || 26% | 15% | 50% | 60%
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Reduction in the number of nodes for the reduced elements.

As a matter of fact, our study reveals a number of points or open questions. Indeed, we
don’t find any triangle of degree greater than 4, we meet a difficulty with the quads of degree
greater than 4 where the complete symmetry in the nodes arrangement was an issue. In three
dimension, we don’t find any tetrahedron of degree greater than 3 and we were not capable to
explicitly construct reduced hexes with a degree greater than 3, such a task being, at least, too
technical.

The elements we find are serendipity elements as far as we consider the quads and the
hexes. For the few triangles and the tetrahedron discussed in this paper, the term reduced (or
incomplete) seems to be more appropriate to qualify such elements.

As regards the geometric validity (positive jacobians) of the reduced elements, we showed
that the computational effort could be costly since a large number of determinants must be
evaluated apart if one considers straight-sided elements.

To end, we would like to thank D.L. Arnold and M.S. Floater with whom we had a number
of fruitful discussions.
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